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1. Representations of Communication Signals

Hilbert transform (HT) of a function s(t): �̂�𝑠 𝑡𝑡 = 𝑠𝑠 𝑡𝑡 ∗
1

𝜋𝜋𝑡𝑡
=

1
𝜋𝜋

�
−∞

∞ 𝑠𝑠 𝜏𝜏
𝑡𝑡 − 𝜏𝜏

𝑑𝑑𝜏𝜏

Fourier transform of HT: �̂�𝑆 𝑓𝑓 = −𝑗𝑗 sgn 𝑓𝑓 𝑆𝑆 𝑓𝑓

Hilbert transform increase the phase of the negative frequencies by π/2 and 
to decrease the phase of the positive frequencies by π/2.

Spectrum of a function using HT s(t): 𝑆𝑆 𝑓𝑓 = 𝑗𝑗 sgn 𝑓𝑓 �̂�𝑆 𝑓𝑓

Properties of the Hilbert transform: �̂�𝑆 𝑓𝑓 = 𝑆𝑆 𝑓𝑓 , ̂̂𝑠𝑠 𝑡𝑡 = −𝑠𝑠 𝑡𝑡 .

Function s(t) in time domain using HT :

(1.1)

(1.2)

𝑠𝑠 𝑡𝑡 = �̂�𝑠 𝑡𝑡 ∗
−1
𝜋𝜋𝑡𝑡

= −
1
𝜋𝜋

�
−∞

∞ �̂�𝑠 𝜏𝜏
𝑡𝑡 − 𝜏𝜏

𝑑𝑑𝜏𝜏
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Complex baseband 
representationc



𝑆𝑆 𝑓𝑓 = 0 for 𝑓𝑓 ≤ 𝑓𝑓𝑐𝑐 − ⁄𝐵𝐵 2 , 𝑓𝑓 ≥ 𝑓𝑓𝑐𝑐 + ⁄𝐵𝐵 2

𝑠𝑠 𝑡𝑡 = 𝑠𝑠∗ 𝑡𝑡 and 𝑆𝑆∗ −𝑓𝑓 = 𝑆𝑆 𝑓𝑓

The signal s(t) is real if:

.

Complex analytic signal
The real bandpass signal s(t) is unique determined by S(f) for f > 0:

Inverse Fourier transform of 𝑆𝑆+ 𝑓𝑓 is then:

𝑆𝑆+ 𝑓𝑓 = �2𝑆𝑆 𝑓𝑓 for 𝑓𝑓 ≥ 0
0 for 𝑓𝑓 < 0 ⇒ 𝑆𝑆+ 𝑓𝑓 = 𝑆𝑆 𝑓𝑓 + 𝑗𝑗�̂�𝑆 𝑓𝑓

(1.3)

A signal is bandpass (narrowband) if its Fourier transform satisfies

Where the signal bandwidth is given by 𝐵𝐵 ≤ 2𝑓𝑓𝑐𝑐

𝑠𝑠+ 𝑡𝑡 = 𝑠𝑠 𝑡𝑡 + 𝑗𝑗�̂�𝑠 𝑡𝑡
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Conversely: 𝑠𝑠 𝑡𝑡 = Re 𝑠𝑠+ 𝑡𝑡

𝑆𝑆 𝑓𝑓 =
1
2

𝑆𝑆+ 𝑓𝑓 + 𝑆𝑆+
∗ −𝑓𝑓

Complex baseband representation, Complex envelope
For known carrier frequency fc the s+(t) can be translated to baseband: 

�̃�𝑆 𝑓𝑓 = 𝑆𝑆+ 𝑓𝑓 + 𝑓𝑓𝐶𝐶 , �̃�𝑠 𝑡𝑡 = 𝑠𝑠+ 𝑡𝑡 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑐𝑐𝑡𝑡 ⇒ 𝑠𝑠+ 𝑡𝑡 = �̃�𝑠 𝑡𝑡 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑐𝑐𝑡𝑡

By substituting  (4) into (5) the signal s+(t) can be expressed as: 

(1.5)

(1.6)𝑠𝑠 𝑡𝑡 = Re �̃�𝑠 𝑡𝑡 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑐𝑐𝑡𝑡 , 𝑆𝑆 𝑓𝑓 =
1
2

�̃�𝑆 𝑓𝑓 − 𝑓𝑓𝑐𝑐 + �̃�𝑆∗ −𝑓𝑓 − 𝑓𝑓𝑐𝑐

(1.4)

Note that the Fourier transform pairs x(t) ↔ X(ω) satisfy the “shift” rule:

𝑥𝑥 𝑡𝑡 𝑒𝑒𝑗𝑗𝜔𝜔𝑐𝑐𝑡𝑡 ↔ 𝑋𝑋 𝜔𝜔 − 𝜔𝜔𝑐𝑐
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Bandpass signal:

Analytical signal:

Complex envelope:

f

|S+(f)|
f

|S(f)|

 fc     -fc    fc- B/2

 fc    fc- B/2

f

( )fS~
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Decomposition of the complex envelope into real and imaginary parts: 

�̃�𝑠 𝑡𝑡 = 𝑠𝑠𝐼𝐼 𝑡𝑡 + 𝑗𝑗𝑠𝑠𝑄𝑄 𝑡𝑡

𝑠𝑠 𝑡𝑡 = Re �̃�𝑠 𝑡𝑡 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑐𝑐𝑡𝑡 = 𝑠𝑠𝐼𝐼 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 − 𝑠𝑠𝑄𝑄 𝑡𝑡 sin 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡

𝑆𝑆 𝑓𝑓 =
1
2 𝑆𝑆𝐼𝐼 𝑓𝑓 − 𝑓𝑓𝐶𝐶 + 𝑆𝑆𝐼𝐼 𝑓𝑓 + 𝑓𝑓𝐶𝐶 +

𝑗𝑗
2 𝑆𝑆𝑄𝑄 𝑓𝑓 − 𝑓𝑓𝐶𝐶 + 𝑆𝑆𝑄𝑄 𝑓𝑓 + 𝑓𝑓𝐶𝐶

The real and imaginary parts can be expressed as:

𝑠𝑠𝐼𝐼 𝑡𝑡 =
1
2

�̃�𝑠 𝑡𝑡 + �̃�𝑠∗ 𝑡𝑡 , 𝑆𝑆𝐼𝐼 𝑓𝑓 =
1
2

�̃�𝑆 𝑓𝑓 + �̃�𝑆∗ −𝑓𝑓

Then: 

𝑠𝑠𝑄𝑄 𝑡𝑡 =
1
2

�̃�𝑠 𝑡𝑡 − �̃�𝑠∗ 𝑡𝑡 , 𝑆𝑆𝑄𝑄 𝑓𝑓 =
1
2

�̃�𝑆 𝑓𝑓 − �̃�𝑆∗ −𝑓𝑓

𝑐𝑐𝑐𝑐𝑠𝑠 𝑥𝑥 = 1
𝑗𝑒𝑒𝑗𝑗𝑗𝑗 + 1

𝑗𝑒𝑒−𝑗𝑗𝑗𝑗 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 = 1
𝑗𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗 − 1

𝑗𝑗𝑗𝑒𝑒−𝑗𝑗𝑗𝑗
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𝑆𝑆 𝑓𝑓 + 𝑓𝑓𝑐𝑐 =
1
2

�̃�𝑆 𝑓𝑓 + �̃�𝑆∗ −𝑓𝑓 − 2𝑓𝑓𝑐𝑐 ,

𝑆𝑆 𝑓𝑓 − 𝑓𝑓𝑐𝑐 =
1
2

�̃�𝑆 𝑓𝑓 − 2𝑓𝑓𝑐𝑐 + �̃�𝑆∗ −𝑓𝑓 ,

𝑆𝑆𝐼𝐼 𝑓𝑓 = LPF𝑓𝑓𝑐𝑐 𝑆𝑆 𝑓𝑓 − 𝑓𝑓𝑐𝑐 + 𝑆𝑆 𝑓𝑓 + 𝑓𝑓𝑐𝑐 ,

𝑆𝑆𝑄𝑄 𝑓𝑓 = 𝑗𝑗LPF𝑓𝑓𝑐𝑐 𝑆𝑆 𝑓𝑓 − 𝑓𝑓𝑐𝑐 − 𝑆𝑆 𝑓𝑓 + 𝑓𝑓𝑐𝑐 ,
(1.7)

By applying the spectrum of a bandpass signal given by (1.6) and frequency shift 

we can get: 

Where LPFfc represents ideal lowpass filtering with cut-off frequency at fc. 



LPFfc

LPFfc

-j
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𝑠𝑠𝐼𝐼 𝑡𝑡 = LPF𝑓𝑓𝑐𝑐 2𝑠𝑠 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 , 𝑠𝑠𝑄𝑄 𝑡𝑡 = −LPF𝑓𝑓𝑐𝑐 2𝑠𝑠 𝑡𝑡 sin 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡

By conversion (7) into the time domain, we have

Bandpass signal Complex envelope

𝑠𝑠 𝑡𝑡 �̃�𝑠 𝑡𝑡

𝑠𝑠𝐼𝐼 𝑡𝑡

𝑠𝑠𝑄𝑄 𝑡𝑡

2cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡
2sin 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡

�̃�𝑠 𝑡𝑡 = 𝑠𝑠𝐼𝐼 𝑡𝑡 + 𝑗𝑗𝑠𝑠𝑄𝑄 𝑡𝑡



A set of signals is represented by a set of vectors with respect to an
orthonormal basis. Suitable for M-ary communications.

Functions f1(t) and f2(t) are orthogonal if: (1.8)�
−∞

∞

𝑓𝑓1 𝑡𝑡 𝑓𝑓𝑗 𝑡𝑡 𝑑𝑑𝑡𝑡 = 0

The norm of a function f(t): (1.9)𝑓𝑓 = �
−∞

∞

𝑓𝑓𝑗 𝑡𝑡 𝑑𝑑𝑡𝑡

Functions f1(t) and f2(t) are orthonormal if they meet (8) and 𝑓𝑓1 = 𝑓𝑓𝑗 = 1

𝑠𝑠𝑖𝑖 𝑡𝑡 𝑖𝑖=1
𝑀𝑀

𝜑𝜑𝑗𝑗 𝑡𝑡
𝑗𝑗=1
𝑁𝑁

𝐬𝐬𝑖𝑖 = 𝑠𝑠𝑖𝑖,1, 𝑠𝑠𝑖𝑖,𝑗, … , 𝑠𝑠𝑖𝑖,𝑁𝑁
𝑇𝑇

For a M-ary signal set we need to obtain an orthonormal basis (a set 
of orthonormal signals) ,  where N ≤ M, which span the space formed 
by linear combinations of the M signals. Then we can represent simply by 
the N-dimensional vector .

𝑠𝑠𝑖𝑖 𝑡𝑡

1. Representations of Communication Signals
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Signal space 
representation

Example 1.1 (M=2), antipodal signals: 𝑠𝑠1 𝑡𝑡 = 𝑝𝑝 𝑡𝑡 , 𝑠𝑠𝑗 𝑡𝑡 = −𝑝𝑝 𝑡𝑡 .

Suppose the basic pulse shape p(t) has unit norm, i.e. , we can

choose it to be the basis of signal set  , then

𝑝𝑝 𝑡𝑡 = 1
𝒔𝒔1 = 1 , 𝒔𝒔𝑗 = −1 .

Example 1.2 (M=4) QPSK, considering the symbol interval 〈0; T), we can write:

where pT(t) is the pulse shape function.

𝑠𝑠1 𝑡𝑡 = 2𝑃𝑃 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + ⁄𝜋𝜋 4 𝑝𝑝𝑇𝑇 𝑡𝑡
𝑠𝑠𝑗 𝑡𝑡 = 2𝑃𝑃 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + ⁄3𝜋𝜋 4 𝑝𝑝𝑇𝑇 𝑡𝑡
𝑠𝑠3 𝑡𝑡 = 2𝑃𝑃 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + ⁄5𝜋𝜋 4 𝑝𝑝𝑇𝑇 𝑡𝑡
𝑠𝑠4 𝑡𝑡 = 2𝑃𝑃 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + ⁄7𝜋𝜋 4 𝑝𝑝𝑇𝑇 𝑡𝑡

𝜑𝜑 𝑡𝑡 = 𝑝𝑝 𝑡𝑡
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representation

Assuming that 𝑇𝑇 ≫ 𝑓𝑓𝑐𝑐 holds for the symbol period (orthogonality condition) a 
simple basis for this signal can be obtained in the form:

The corresponding signal vectors then are:

𝜑𝜑1 𝑡𝑡 =
2
𝑇𝑇

cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑝𝑝𝑇𝑇 𝑡𝑡

𝜑𝜑𝑗 𝑡𝑡 = −
2
𝑇𝑇

sin 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑝𝑝𝑇𝑇 𝑡𝑡

𝒔𝒔1 = ⁄𝑃𝑃𝑇𝑇 2 , ⁄𝑃𝑃𝑇𝑇 2
𝑇𝑇

,

𝒔𝒔𝑗 = − ⁄𝑃𝑃𝑇𝑇 2 , ⁄𝑃𝑃𝑇𝑇 2
𝑇𝑇

,

𝒔𝒔3 = − ⁄𝑃𝑃𝑇𝑇 2 , − ⁄𝑃𝑃𝑇𝑇 2
𝑇𝑇

,

𝒔𝒔4 = ⁄𝑃𝑃𝑇𝑇 2 , − ⁄𝑃𝑃𝑇𝑇 2
𝑇𝑇

,

2PT

2PT

(1.10)



Example 1.3 (M=4) QPSK, considering the symbol interval 〈0; T) and using the 
complex baseband representation we can write:

A basis for this set of complex envelopes is:

The corresponding signal vectors then have 
only one coordinate:

�̃�𝑠1 𝑡𝑡 = 2𝑃𝑃e𝑗𝑗 ⁄𝑗𝑗 4𝑝𝑝𝑇𝑇 𝑡𝑡 ,
�̃�𝑠𝑗 𝑡𝑡 = 2𝑃𝑃e𝑗𝑗 ⁄3𝑗𝑗 4𝑝𝑝𝑇𝑇 𝑡𝑡 ,
�̃�𝑠3 𝑡𝑡 = 2𝑃𝑃e𝑗𝑗𝑗 ⁄𝑗𝑗 4𝑝𝑝𝑇𝑇 𝑡𝑡 ,
�̃�𝑠4 𝑡𝑡 = 2𝑃𝑃e𝑗𝑗 ⁄7𝑗𝑗 4𝑝𝑝𝑇𝑇 𝑡𝑡 .

𝜑𝜑1 𝑡𝑡 =
1
𝑇𝑇

𝑝𝑝𝑇𝑇 𝑡𝑡

𝒔𝒔1 = 𝑃𝑃𝑇𝑇 + 𝑗𝑗 𝑃𝑃𝑇𝑇 ,
𝒔𝒔𝑗 = − 𝑃𝑃𝑇𝑇 + 𝑗𝑗 𝑃𝑃𝑇𝑇 ,
𝒔𝒔3 = − 𝑃𝑃𝑇𝑇 − 𝑗𝑗 𝑃𝑃𝑇𝑇 ,
𝒔𝒔4 = 𝑃𝑃𝑇𝑇 − 𝑗𝑗 𝑃𝑃𝑇𝑇 ,

1. Representations of Communication Signals Signal space 
representation
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Gram-Schmidt procedure
Universal method of finding the orthonormal base 𝜑𝜑𝑗𝑗 𝑡𝑡

𝑗𝑗=1
𝑁𝑁

of a set of finite 

energy signals 𝑠𝑠𝑖𝑖 𝑡𝑡 𝑖𝑖=1
𝑀𝑀 , 𝑀𝑀 ≥ 𝑁𝑁.

𝜑𝜑1 𝑡𝑡 = ⁄𝑠𝑠1 𝑡𝑡 𝑠𝑠1 .

𝑣𝑣𝑗𝑗 𝑡𝑡 = 𝑠𝑠𝑗𝑗 𝑡𝑡 − 𝑠𝑠𝑗𝑗 , 𝜑𝜑1 𝜑𝜑1 𝑡𝑡 − ⋯ − 𝑠𝑠𝑗𝑗 , 𝜑𝜑𝑗𝑗−1 𝜑𝜑𝑗𝑗−1 𝑡𝑡 ,

𝜑𝜑𝑗𝑗 𝑡𝑡 = ⁄𝑣𝑣𝑗𝑗 𝑡𝑡 𝑣𝑣𝑗𝑗 .

𝑠𝑠𝑗𝑗 , 𝜑𝜑𝑘𝑘 = ∫−∞
∞ 𝑠𝑠𝑗𝑗 𝑡𝑡 𝜑𝜑𝑘𝑘

∗ 𝑡𝑡 𝑑𝑑𝑡𝑡.

1. Choose 

2. For j >1 calculate

where

Then choose

3. Continue until all M functions are expressed in terms of 𝜑𝜑𝑗𝑗 𝑡𝑡 . 

Note that all the 𝑠𝑠𝑖𝑖 𝑡𝑡 𝑖𝑖=1
𝑀𝑀 signals must be independent.  In other case the

norm of the signal 𝑣𝑣𝑗𝑗 𝑡𝑡 will be zero for some j and we can skip that
signal and move to the next one.
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Example 4: let us consider the set of M=3 signals:

1.

2.

0           1            2 0             1            2 0             1            2
t t t

1 1

-1

2

𝜑𝜑1 𝑡𝑡 = ⁄𝑠𝑠1 𝑡𝑡 𝑠𝑠1 = ⁄𝑠𝑠1 𝑡𝑡 2 .

𝑣𝑣𝑗 𝑡𝑡 = 𝑠𝑠𝑗 𝑡𝑡 − �
0

𝑗
𝑠𝑠𝑗 𝑡𝑡 𝜑𝜑1 𝑡𝑡 𝑑𝑑𝑡𝑡

0

⋅ 𝜑𝜑1 𝑡𝑡 = 𝑠𝑠𝑗 𝑡𝑡 ,

𝜑𝜑𝑗 𝑡𝑡 = ⁄𝑣𝑣𝑗 𝑡𝑡 𝑣𝑣𝑗 = ⁄𝑠𝑠𝑗 𝑡𝑡 2 .

15
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𝑣𝑣3 𝑡𝑡 = 𝑠𝑠3 𝑡𝑡 − �
0

𝑗
𝑠𝑠3 𝑡𝑡 𝜑𝜑1 𝑡𝑡 𝑑𝑑𝑡𝑡

−1

⋅ 𝜑𝜑1 𝑡𝑡 − �
0

𝑗
𝑠𝑠3 𝑡𝑡 𝜑𝜑𝑗 𝑡𝑡 𝑑𝑑𝑡𝑡

1

⋅ 𝜑𝜑𝑗 𝑡𝑡

𝑠𝑠3 𝑡𝑡

= 0,

𝜑𝜑3 𝑡𝑡 = 0.

0           1            2 0             1            2t t

ϕ1(t) ϕ2(t)

2/12/1

2/1−

The vector representation for the signals then are:

𝑠𝑠1 = 2, 0
𝑇𝑇

, 𝑠𝑠𝑗 = 0, 2
𝑇𝑇

a 𝑠𝑠3 = −1,1 𝑇𝑇 ,

16
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𝑠𝑠𝑖𝑖 𝑡𝑡 = �
𝑗𝑗=1

𝑁𝑁

𝑠𝑠𝑖𝑖,𝑗𝑗𝜑𝜑𝑗𝑗 𝑡𝑡 .

𝑠𝑠𝑖𝑖,𝑗𝑗 = 𝑠𝑠𝑖𝑖 , 𝜑𝜑𝑗𝑗 = �
−∞

∞

𝑠𝑠𝑖𝑖 𝑡𝑡 𝜑𝜑𝑗𝑗
∗ 𝑡𝑡 𝑑𝑑𝑡𝑡

𝐬𝐬𝑖𝑖 = 𝑠𝑠𝑖𝑖,1, 𝑠𝑠𝑖𝑖,𝑗, … , 𝑠𝑠𝑖𝑖,𝑁𝑁
𝑇𝑇

With the knowledge of the basis 𝜑𝜑𝑗𝑗 𝑡𝑡
𝑗𝑗=1
𝑁𝑁

, we can represent 𝑠𝑠𝑖𝑖 𝑡𝑡 by the 

N-dimensional vector

where

(1.11)

(1.12)

Orthogonal representation
A set of finite energy signals 𝑠𝑠𝑖𝑖 𝑡𝑡 𝑖𝑖=1

𝑀𝑀 can be expressed by

1. Representations of Communication Signals Signal space 
representation
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1. Representations of Communication Signals Signal space 
representation

𝜑𝜑𝑖𝑖 , 𝜑𝜑𝑗𝑗 = �
−∞

∞

𝜑𝜑𝑖𝑖 𝑡𝑡 𝜑𝜑𝑗𝑗
∗ 𝑡𝑡 𝑑𝑑𝑡𝑡 = 𝛿𝛿𝑖𝑖𝑗𝑗 .

𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗 = �
−∞

∞

𝑠𝑠𝑖𝑖 𝑡𝑡 𝑠𝑠𝑗𝑗
∗ 𝑡𝑡 𝑑𝑑𝑡𝑡 =

�
−∞

∞

�
𝑘𝑘=1

𝑁𝑁

𝑠𝑠𝑖𝑖,𝑘𝑘𝜑𝜑𝑘𝑘 𝑡𝑡 �
𝑙𝑙=1

𝑁𝑁

𝑠𝑠𝑖𝑖,𝑙𝑙𝜑𝜑𝑙𝑙 𝑡𝑡

∗

𝑑𝑑𝑡𝑡 = �
𝑘𝑘=1

𝑁𝑁

𝑠𝑠𝑖𝑖,𝑘𝑘𝑠𝑠𝑗𝑗,𝑘𝑘
∗ = 𝐬𝐬𝑖𝑖 ⋅ 𝐬𝐬𝑗𝑗 .

𝑠𝑠𝑖𝑖 = �
−∞

∞

𝑠𝑠𝑖𝑖 𝑡𝑡 𝑠𝑠𝑖𝑖
∗ 𝑡𝑡 𝑑𝑑𝑡𝑡 = 𝐬𝐬𝑖𝑖

Each pair of orthonormal base functions satisfies the equation

The inner product of two signal 𝑠𝑠𝑖𝑖 𝑡𝑡 and 𝑠𝑠𝑗𝑗 𝑡𝑡 is equal to the inner product of the 
vectors 𝒔𝒔𝒊𝒊 and 𝒔𝒔𝑗𝑗

For i = j we get



1. Representations of Communication Signals M-ary
communications

19

M-ary communication allows to send log2M bits at a time using one of M
possible signals.

MPSK modulation: consider the symbol interval 〈0; T). For the amplitude A, 
carrier frequency fc, and i = 1, 2,…, M we can write

𝑠𝑠 𝑡𝑡 = 𝐴𝐴cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 +
2𝑠𝑠𝜋𝜋
𝑀𝑀

𝑝𝑝𝑇𝑇 𝑡𝑡

𝒔𝒔𝑖𝑖 = 𝐴𝐴 ⁄𝑇𝑇 2 cos
2𝑠𝑠𝜋𝜋
𝑀𝑀

, 𝐴𝐴 ⁄𝑇𝑇 2 sin
2𝑠𝑠𝜋𝜋
𝑀𝑀

𝑇𝑇

The basis functions are the same as in the 
case of QPSK modulation (10). With this 
basis si(t) can be expressed by the 2-D vector

s1

ϕ1

ϕ2

s2

s5 s3

s4

s6

s7

s8

Example of 8PSK 
constellation



1. Representations of Communication Signals M-ary
communications
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Pulse amplitude modulation (PAM): consider PAM with four possible symbols

The basis of corresponding 1-D signal space consists of only one element

and si(t) can be expressed by the 1-D vector

𝑠𝑠 𝑡𝑡 = ±𝐴𝐴cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑝𝑝𝑇𝑇 𝑡𝑡 and ±3𝐴𝐴cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑝𝑝𝑇𝑇 𝑡𝑡

𝑠𝑠 𝑡𝑡 = ⁄2 𝑇𝑇 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑝𝑝𝑇𝑇 𝑡𝑡 ,

𝒔𝒔𝑖𝑖 = 𝐴𝐴 ⁄𝑇𝑇 2 3 − 2(𝑠𝑠 − 1)
Example of 4PAM
constellation

I
-3A      -A          A        3A

 i=4      i=3       i=2      i=1



Quadrature amplitude modulation (QAM): In QAM one data stream is 
modulated with PAM onto the in-phase (I) carrier and another data stream onto 
the quadrature (Q) carrier. 

The signal space is then 2-D. The basis functions are again the same as in (1.10),

and si(t) can be expressed by the 2-D vector. 

In the 16QAM case si(t) can be expressed as

𝒔𝒔𝑖𝑖 = 𝐴𝐴 ⁄𝑇𝑇 2 3 − 2 × mod4 (𝑠𝑠 − 1) , 𝐴𝐴 ⁄𝑇𝑇 2 3 − 2 × ceil ⁄𝑠𝑠 4 − 1

Example of 16QAM
constellation

1. Representations of Communication Signals M-ary
communications

21

𝜑𝜑1 𝑡𝑡 =
2
𝑇𝑇

cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑝𝑝𝑇𝑇 𝑡𝑡

𝜑𝜑𝑗 𝑡𝑡 = −
2
𝑇𝑇

sin 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑝𝑝𝑇𝑇 𝑡𝑡 I

Q s1

s16

s4

s5

s13

s8



1. Representations of Communication Signals Orthogonal signal set

𝐻𝐻1 = 1 1
1 −1

𝐻𝐻𝑗 =
1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

𝐻𝐻1

A set of signals {si(t)} is an orthogonal signal set over symbol interval 〈0; T) if

An orthonormal set is an orthogonal set normalized in energy, i.e.

One possible way to generate an orthogonal set of signals is by using the 
Hadamard matrices defined by

∫0
𝑇𝑇 𝑠𝑠𝑖𝑖 𝑡𝑡 𝑠𝑠𝑗𝑗

∗ 𝑡𝑡 𝑑𝑑𝑡𝑡 = 0 for all 𝑠𝑠 ≠ 𝑗𝑗.

𝜑𝜑𝑗𝑗 𝑡𝑡 = ⁄𝑠𝑠𝑗𝑗 𝑡𝑡 𝑠𝑠𝑗𝑗 .

𝐻𝐻0 = 1 and   𝐻𝐻𝑛𝑛 = 𝐻𝐻𝑛𝑛−1 𝐻𝐻𝑛𝑛−1
𝐻𝐻𝑛𝑛−1 −𝐻𝐻𝑛𝑛−1

i.e.

22

Each row can be used to generate a signal.



1. Representations of Communication Signals Biorthogonal 
signal set

Let we have an orthogonal signal set 𝑠𝑠1 𝑡𝑡 , 𝑠𝑠𝑗 𝑡𝑡 , … , 𝑠𝑠𝑀𝑀 𝑡𝑡 , the corresponding 
biorthogonal set is then 𝑠𝑠1 𝑡𝑡 , −𝑠𝑠1 𝑡𝑡 , 𝑠𝑠𝑗 𝑡𝑡 , −𝑠𝑠𝑗 𝑡𝑡 , … , 𝑠𝑠𝑀𝑀 𝑡𝑡 , −𝑠𝑠𝑀𝑀 𝑡𝑡 i.e. all 
the sign-reversed signals are added to the set.

23

Example of orthogonal 
signals generated by H2

0            1             20              1           2 tt

11

-1

s3(t)s1(t)

0            1             2 0              1             2t t

1 1

-1

s2(t) s4(t)



1. Representations of Communication Signals Channel model and 
signal representation

Let the transmitter sends a signal chosen from the set of M finite-energy signals 
𝑠𝑠1 𝑡𝑡 , 𝑠𝑠𝑗 𝑡𝑡 , ⋯ , 𝑠𝑠𝑀𝑀 𝑡𝑡 , and the channel with transfer �𝐾𝐾 = 𝐾𝐾 𝑒𝑒𝑗𝑗𝜃𝜃, where 𝐾𝐾
and θ are the channel amplitude and phase response, is contaminated by 
AWGN n(t) with noise power spectral density N0. Hence, the received signal is

𝑟𝑟 𝑡𝑡 = �𝐾𝐾𝑠𝑠𝑚𝑚 𝑡𝑡 + 𝑠𝑠 𝑡𝑡 ,

for 𝑚𝑚 ∈ 0,1, ⋯ , 𝑀𝑀 − 1 . By employing the Gram-Schmidt procedure, we can 
construct a set of N orthonormal functions 𝜑𝜑𝑛𝑛 𝑡𝑡 𝑛𝑛=1

𝑁𝑁 , which spans the signal 
space formed by 𝑠𝑠𝑚𝑚 𝑡𝑡 𝑚𝑚=1

𝑀𝑀 . Then we can rewrite (1.13) as

(1.13)

𝐫𝐫 = �𝐾𝐾𝐬𝐬𝐦𝐦 + 𝐧𝐧,

24

where 
𝐫𝐫 = 𝑟𝑟1, 𝑟𝑟𝑗, ⋯ , 𝑟𝑟𝑁𝑁

𝑇𝑇 , 𝐧𝐧 = 𝑠𝑠1, 𝑠𝑠𝑗, ⋯ , 𝑠𝑠𝑁𝑁
𝑇𝑇 ,

and 𝐬𝐬𝑚𝑚 = 𝑠𝑠𝑚𝑚1, 𝑠𝑠𝑚𝑚𝑗, ⋯ , 𝑠𝑠𝑚𝑚𝑁𝑁
𝑇𝑇 for   𝑚𝑚 = 0, 1, ⋯ , 𝑀𝑀 − 1.

(1.14)

(1.15)



𝑠𝑠𝑚𝑚 𝑡𝑡 = �
𝑘𝑘=1

𝑁𝑁

𝑠𝑠𝑚𝑚,𝑘𝑘𝜑𝜑𝑘𝑘 𝑡𝑡 .

The vector components of (1.14) are given by (1.12)

1. Representations of Communication Signals Channel model and 
signal representation

𝑠𝑠𝑚𝑚𝑘𝑘 = 𝑠𝑠𝑚𝑚, 𝜑𝜑𝑘𝑘 = �
−∞

∞

𝑠𝑠𝑚𝑚 𝑡𝑡 𝜑𝜑𝑘𝑘
∗ 𝑡𝑡 𝑑𝑑𝑡𝑡

𝑟𝑟𝑘𝑘 = �
−∞

∞

𝑟𝑟 𝑡𝑡 𝜑𝜑𝑘𝑘
∗ 𝑡𝑡 𝑑𝑑𝑡𝑡, 𝑠𝑠𝑘𝑘 = �

−∞

∞

𝑠𝑠 𝑡𝑡 𝜑𝜑𝑘𝑘
∗ 𝑡𝑡 𝑑𝑑𝑡𝑡,

for   𝑚𝑚 = 0, 1, ⋯ , 𝑀𝑀 − 1.

and

Finally, the transmitted signals are 

Similar relations we can write for 𝑟𝑟 𝑡𝑡 and 𝑠𝑠 𝑡𝑡 . Note that in some cases the 
orthonormal function set is augmented by 𝜑𝜑𝑛𝑛 𝑡𝑡 𝑛𝑛=𝑁𝑁+1

∞ to form an 
orthonormal basis for every finite-energy signal 𝑠𝑠 𝑡𝑡 ,

(1.16)

(1.17)

25
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2. Detection theory Bayesian estimation

Let the signal s(t) propagating through a transmission channel be disturbed by the 
noise n(t). The receivedsignal 𝑟𝑟 𝑡𝑡 = 𝑠𝑠 𝑡𝑡 + 𝑠𝑠 𝑡𝑡 is then understood as a realization 
of a random process R with values r.
At any time the receiver must decide whether the symbol 0 or the symbol 1 has 
been transmitted (whether the hypothesis H0 or H1 holds), while maximizing the 
probability of correct decision.

Z1

Z0

H1 is chosen

Source

( )1Hrf

( )0Hrf   

Z0 and Z1: decision regions
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2. Detection theory Bayesian estimation

How to get the best possible detection? We will design a detector that minimizes 
the expected cost of a decision: 

1. A large cost are assigned to all undesirable conditions C10 > C00, C01 > C11

2. The average loss (Bayes risk) R = E(C) is determined and minimized.

Decision Truth Notation Cost Designation

1 H0 H0 (D0,H0) C00 -

2 H0 H1 (D0,H1) C01 miss

3 H1 H0 (D1,H0) C10 false alarm

4 H1 H1 (D1,H1) C11 detection

𝑅𝑅 = 𝐶𝐶00𝑃𝑃 𝐷𝐷0, 𝐻𝐻0 + 𝐶𝐶01𝑃𝑃 𝐷𝐷0, 𝐻𝐻1 + 𝐶𝐶10𝑃𝑃 𝐷𝐷1, 𝐻𝐻0 + 𝐶𝐶11𝑃𝑃 𝐷𝐷1, 𝐻𝐻1 . (2.1)

In the decision process there are four possible outcomes:
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2. Detection theory Bayesian estimation

𝑃𝑃 𝐷𝐷𝑖𝑖 , 𝐻𝐻𝑗𝑗 = 𝑃𝑃 𝐷𝐷𝑖𝑖 �𝐻𝐻𝑗𝑗 𝑃𝑃 𝐻𝐻𝑗𝑗Bayes’ rule:

𝑃𝑃 𝐷𝐷𝑖𝑖 �𝐻𝐻𝑗𝑗 = �
𝑍𝑍𝑖𝑖

𝑓𝑓 𝑟𝑟 �𝐻𝐻𝑗𝑗 𝑑𝑑𝑟𝑟, 𝑠𝑠, 𝑗𝑗 = 0,1

(2.2)

(2.3)

By substution (2.2) and (2.3) into (2.1) and by using the formula

𝑅𝑅 = 𝐶𝐶10𝑃𝑃 𝐻𝐻0 + 𝐶𝐶11𝑃𝑃 𝐻𝐻1

+ �
𝑍𝑍0

𝑃𝑃 𝐻𝐻1 𝐶𝐶01 + 𝐶𝐶11 𝑓𝑓 𝑟𝑟�𝐻𝐻1 − 𝑃𝑃 𝐻𝐻0 𝐶𝐶10 + 𝐶𝐶00 𝑓𝑓 𝑟𝑟�𝐻𝐻0 𝑑𝑑𝑟𝑟.

�
𝑍𝑍1

𝑓𝑓 𝑟𝑟 �𝐻𝐻𝑗𝑗 𝑑𝑑𝑟𝑟 = 1 − �
𝑍𝑍0

𝑓𝑓 𝑟𝑟 �𝐻𝐻𝑗𝑗 𝑑𝑑𝑟𝑟 , 𝑠𝑠, 𝑗𝑗 = 0,1

we get

where

is a conditional probability: the likelihood of event A occurring given that B is true.
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2. Detection theory Bayesian estimation

To minimize the Bayes risk, it is necessary to select a region Z0 that guarantees 
the validity of the relationship: 

𝑃𝑃 𝐻𝐻1 𝐶𝐶01 + 𝐶𝐶11 𝑓𝑓 𝑟𝑟�𝐻𝐻1 < 𝑃𝑃 𝐻𝐻0 𝐶𝐶10 + 𝐶𝐶00 𝑓𝑓 𝑟𝑟�𝐻𝐻0 .

The validity of a hypothesis is then determined by inequality:

where is a likelihood ratio and is

a threshold.

𝑓𝑓 𝑟𝑟�𝐻𝐻1

𝑓𝑓 𝑟𝑟�𝐻𝐻0

𝐻𝐻1
>
<
𝐻𝐻0

𝑃𝑃 𝐻𝐻0 𝐶𝐶10 − 𝐶𝐶00

𝑃𝑃 𝐻𝐻1 𝐶𝐶01 − 𝐶𝐶11

Λ 𝑟𝑟 =
𝑓𝑓 𝑟𝑟�𝐻𝐻1

𝑓𝑓 𝑟𝑟�𝐻𝐻0
𝜂𝜂 =

𝑃𝑃 𝐻𝐻0 𝐶𝐶10 − 𝐶𝐶00

𝑃𝑃 𝐻𝐻1 𝐶𝐶01 − 𝐶𝐶11

(17)



2. Detection theory Bayesian estimation

ln Λ 𝑟𝑟

𝐻𝐻1
>
<
𝐻𝐻0

ln 𝜂𝜂Commonly we use:

Instead of one realization, a few of ones can be used:

Example 2.1 (binary signal) H1:  R =m+N,  
H0:  R =N

where m  is the signal amplitude for log 1 and N is the noise with standard 
deviation σ. 

𝑓𝑓 𝑟𝑟�𝐻𝐻1 =
1

2𝜋𝜋𝜎𝜎
exp −

𝑟𝑟 − 𝑚𝑚 𝑗

2𝜎𝜎𝑗

𝑓𝑓 𝑟𝑟�𝐻𝐻0 =
1

2𝜋𝜋𝜎𝜎
exp −

𝑟𝑟𝑗

2𝜎𝜎𝑗

⇒ Λ 𝑦𝑦 = exp −
𝑚𝑚𝑗 − 2𝑟𝑟𝑚𝑚

2𝜎𝜎𝑗

𝐑𝐑 = 𝑅𝑅1, 𝑅𝑅𝑗, ⋯ , 𝑅𝑅𝑘𝑘 .

30



ln Λ 𝑟𝑟 = −
𝑚𝑚𝑗

2𝜎𝜎𝑗 −
𝑟𝑟𝑚𝑚
𝜎𝜎𝑗

𝐻𝐻1
>
<
𝐻𝐻0

ln 𝜂𝜂 ⇒ 𝑟𝑟

𝐻𝐻1
>
<
𝐻𝐻0

𝜎𝜎𝑗

𝑚𝑚
ln 𝜂𝜂 +

𝑚𝑚
2

= 𝛾𝛾

Bayes criteria: the hypothesis is chosen using (17) where

ML (Maximum Likelihood) criteria: the hypothesis is chosen using (17) where:

𝜂𝜂 =
𝑃𝑃 𝐻𝐻0 𝐶𝐶10 − 𝐶𝐶00

𝑃𝑃 𝐻𝐻1 𝐶𝐶01 − 𝐶𝐶11

𝜂𝜂 = 1 ⇒ 𝑃𝑃 𝐻𝐻0
0.𝑗

𝐶𝐶10 − 𝐶𝐶00
1

= 𝑃𝑃 𝐻𝐻1
0.𝑗

𝐶𝐶01 − 𝐶𝐶11
1

2. Detection theory Bayesian estimation
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Example 2.2 (binary signal) 
C00= C11= 0,   C10= C01=1.  P(H1) =0.45, P(H0) = 0.55

𝑟𝑟

𝐻𝐻1
>
<
𝐻𝐻0

𝜎𝜎𝑗

𝑚𝑚
ln

𝑃𝑃 𝐻𝐻0 𝐶𝐶10 − 𝐶𝐶00

𝑃𝑃 𝐻𝐻1 𝐶𝐶01 − 𝐶𝐶11
+

𝑚𝑚
2

Bayes criteria ML criteria

𝑟𝑟

𝐻𝐻1
>
<
𝐻𝐻0

ln
0.45
0.55

+
1
2

⇒ 𝑟𝑟

𝐻𝐻1
>
<
𝐻𝐻0

−0.2 +
1
2

0.3

𝑟𝑟

𝐻𝐻1
>
<
𝐻𝐻0

1
2

2. Detection theory Bayesian estimation
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2. Detection theory Bayesian estimation

Generally, the signal can be represented by M states. Then it is necessary to 
decide on the validity of M hypotheses: 𝐻𝐻0, 𝐻𝐻1, ⋯ , 𝐻𝐻𝑀𝑀 they offer M2 possible 
decission.

The Bayes criterion requires the cost of Cij to be assigned to each combination 
of the decision Di and the hypothesis Hj for i,j = 0,1,…M-1. 

Bayes risk is then:

The next step is to minimize R and to determine the conditions for the selection 
of individual hypotheses (similar to the binary signal)

𝑅𝑅 = �
𝑖𝑖=0

𝑀𝑀−1

�
𝑗𝑗=0

𝑀𝑀−1

𝑃𝑃 𝐻𝐻𝑗𝑗 𝐶𝐶𝑖𝑖𝑗𝑗 𝑃𝑃 𝐷𝐷𝑖𝑖 , 𝐻𝐻𝑗𝑗

relation (16)

M-ary hypotheses testing

33



Parameter estimation

34

2. Detection theory

Presumption: the receiver has decided in favor of a true hypothesis, but a certain 
signal parameter is unknown.
Objective: to estimate the unknown parameter f from the finite number of signal 
samples.
Given: k implementations 𝑅𝑅1, 𝑅𝑅𝑗, ⋯ , 𝑅𝑅𝑘𝑘 of the random variable R corresponding 
to the received signal and their samples 𝑟𝑟1, 𝑟𝑟𝑗, ⋯ , 𝑟𝑟𝑘𝑘.

If f is random, the Bayesian estimation is used, if f is non-random, the ML
Maximum Likelihood (ML) estimation is used.

ML estimation: if the conditional function 𝑓𝑓 𝐫𝐫|𝜑𝜑 of the density of the random 
variable R depends on the parameter f, the likelihood function will be

𝐿𝐿 𝜑𝜑 = 𝑓𝑓 𝐫𝐫|𝜑𝜑 = 𝑓𝑓 𝑟𝑟1, 𝑟𝑟𝑗, ⋯ , 𝑟𝑟𝐾𝐾|𝜑𝜑 = �
𝑘𝑘=1

𝐾𝐾

𝑓𝑓 𝑟𝑟𝑘𝑘|𝜑𝜑
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Parameter estimation2. Detection theory

… and the parameter estimation

For the 𝑓𝑓 𝐫𝐫|𝜑𝜑 maximalization the standard procedure

can be used. In many cases, it is preferable to use

It holds

𝜕𝜕
𝜕𝜕𝜑𝜑

𝑓𝑓 𝐫𝐫|𝜑𝜑 = 0

𝜕𝜕
𝜕𝜕𝜑𝜑

ln 𝑓𝑓 𝐫𝐫|𝜑𝜑 = 0

�𝜑𝜑𝑀𝑀𝑀𝑀 = arg max
𝜑𝜑

𝑓𝑓 𝐫𝐫|𝜑𝜑

�𝜑𝜑𝑀𝑀𝑀𝑀 = arg max
𝜑𝜑

ln𝑓𝑓 𝐫𝐫|𝜑𝜑 = arg max
𝜑𝜑

𝑓𝑓 𝐫𝐫|𝜑𝜑

(2.5)
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Parameter estimation2. Detection theory

Example 2.3 H1:  Rk = m+Nk, k = 1,2,…, K
H0:  Rk = Nk k = 1,2,…, K
m = ?

𝑓𝑓 𝐫𝐫|𝑚𝑚 = �
𝑘𝑘=1

𝐾𝐾
1

2𝜋𝜋𝜎𝜎
exp −

𝑟𝑟𝑘𝑘 − 𝑚𝑚 𝑗

2𝜎𝜎𝑗 =
1

2𝜋𝜋 ⁄𝐾𝐾 𝑗𝜎𝜎𝐾𝐾 exp − �
𝑘𝑘=1

𝐾𝐾
𝑟𝑟𝑘𝑘 − 𝑚𝑚 𝑗

2𝜎𝜎𝑗

𝜕𝜕 ln 𝑓𝑓 𝐫𝐫|𝑚𝑚
𝜕𝜕𝑚𝑚

= �
𝑘𝑘=1

𝐾𝐾
𝑟𝑟𝑘𝑘

𝜎𝜎𝑗 −
𝐾𝐾𝑚𝑚
𝜎𝜎𝑗 =

𝐾𝐾
𝜎𝜎𝑗

1
𝐾𝐾

�
𝑘𝑘=1

𝐾𝐾

𝑟𝑟𝑘𝑘 − 𝑚𝑚 = 0 ⇒ 𝑚𝑚 =
1
𝐾𝐾

�
𝑘𝑘=1

𝐾𝐾

𝑟𝑟𝑘𝑘

ln 𝑓𝑓 𝐫𝐫|𝑚𝑚 = ln
1

2𝜋𝜋 ⁄𝐾𝐾 𝑗𝜎𝜎𝐾𝐾 + �
𝑘𝑘=1

𝐾𝐾
𝑟𝑟𝑘𝑘 − 𝑚𝑚 𝑗

2𝜎𝜎𝑗



Matched filter2. Detection theory

• Let we have a binary signal: s0(t), s1(t)  ⇒ H0, H1

• Then let we add AWGN: n(t) with a double-sided power spectral density N0/2 
• The response zk(t) of an LTI filter with the impulse response h(t) is sampled 

at the instant intervals nT0.

𝑧𝑧𝑘𝑘 𝑡𝑡 = 𝑠𝑠𝑘𝑘 𝑡𝑡 ∗ ℎ 𝑡𝑡
�̂�𝑠𝑘𝑘 𝑡𝑡

+ 𝑠𝑠 𝑡𝑡 ∗ ℎ 𝑡𝑡
�𝑛𝑛 𝑡𝑡

, 𝑘𝑘 = 0,1
Let it holds:

𝐸𝐸 �̂�𝑧0 𝑇𝑇0 = �̂�𝑠0 𝑇𝑇0 ,

𝐸𝐸 �̂�𝑧0
𝑗 𝑇𝑇0 = 𝑅𝑅 �𝑛𝑛 0

𝐸𝐸 �𝑠𝑠 𝑇𝑇0 = 0,

𝐸𝐸 �𝑠𝑠𝑗 𝑇𝑇0 = 𝑅𝑅 �𝑛𝑛 0 ,
⇒

37
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𝑃𝑃 |𝑒𝑒 𝐻𝐻1 = 𝑃𝑃 𝑧𝑧1 𝑇𝑇1 < 𝛾𝛾 = Φ
𝛾𝛾 − �̂�𝑠1 𝑇𝑇0

𝑅𝑅 �𝑛𝑛 0
= 𝑄𝑄

�̂�𝑠1 𝑇𝑇0 − 𝛾𝛾
𝑅𝑅 �𝑛𝑛 0

,

𝑃𝑃 |𝑒𝑒 𝐻𝐻0 = 𝑃𝑃 𝑧𝑧0 𝑇𝑇0 ≥ 𝛾𝛾 = 𝑄𝑄
𝛾𝛾 − �̂�𝑠0 𝑇𝑇0

𝑅𝑅 �𝑛𝑛 0

Conditional probability of false reception:  

𝑃𝑃 𝑒𝑒 = 𝑃𝑃 𝐻𝐻0 𝑃𝑃 |𝑒𝑒 𝐻𝐻0 + 𝑃𝑃 𝐻𝐻1 𝑃𝑃 |𝑒𝑒 𝐻𝐻1

The threshold setting 𝑃𝑃 𝑒𝑒 = 𝑃𝑃 𝐻𝐻0 𝑄𝑄
�̂�𝑠0 𝑇𝑇0 − 𝛾𝛾

𝑅𝑅 �𝑛𝑛 0
+ 𝑃𝑃 𝐻𝐻1 𝑄𝑄

𝛾𝛾 − �̂�𝑠1 𝑇𝑇0

𝑅𝑅 �𝑛𝑛 0

(2.6)

(2.7)

2. Detection theory Matched filter

38

Total error probability:

𝑃𝑃 𝐻𝐻𝑖𝑖 : probability that the hypothesis 𝐻𝐻𝑖𝑖 is valid



2. Detection theory Matched filter
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𝑑𝑑𝑃𝑃 𝑒𝑒
𝑑𝑑𝛾𝛾

= 0 ⇒ 𝛾𝛾 =
�̂�𝑠0 𝑇𝑇0 + �̂�𝑠1 𝑇𝑇0

2
+

𝑅𝑅 �𝑛𝑛 0
�̂�𝑠1 𝑇𝑇0 − �̂�𝑠0 𝑇𝑇0

ln
𝑃𝑃 𝐻𝐻0

𝑃𝑃 𝐻𝐻1

𝑅𝑅 �𝑛𝑛 0 =
𝑁𝑁0

2
�

−∞

∞

𝐻𝐻 𝑓𝑓 𝑗𝑑𝑑𝑓𝑓 =
𝑁𝑁0

2
�

−∞

∞

ℎ 𝑡𝑡 𝑗𝑑𝑑𝑡𝑡 =
𝑁𝑁0

2
ℎ 𝑗

𝑃𝑃 𝑒𝑒 = 𝑄𝑄
�̂�𝑠0 𝑇𝑇0 − �̂�𝑠1 𝑇𝑇0

2 𝑅𝑅 �𝑛𝑛 0

For the case 𝑃𝑃 𝐻𝐻0 = 𝑃𝑃 𝐻𝐻1 = 0.5 the treshold 𝛾𝛾 is: 𝛾𝛾 =
�̂�𝑠0 𝑇𝑇0 + �̂�𝑠1 𝑇𝑇0

2

Filter transfer optimization

(2.8)

(2.9)



2. Detection theory Matched filter
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min 𝑃𝑃 𝑒𝑒 = max
�̂�𝑠0 𝑇𝑇0 − �̂�𝑠1 𝑇𝑇0

2 𝑅𝑅 �𝑛𝑛 0

Cauchy-Schwarz inequality �
−∞

∞

𝑓𝑓 𝑡𝑡 𝑔𝑔 𝑡𝑡 𝑑𝑑𝑡𝑡 ≤ 𝑓𝑓 ⋅ 𝑔𝑔

�
−∞

∞

𝑠𝑠0 𝑇𝑇0 − 𝑡𝑡 − 𝑠𝑠1 𝑇𝑇0 − 𝑡𝑡 ℎ 𝑡𝑡 𝑑𝑑𝑡𝑡 ≤ 𝑠𝑠0 𝑇𝑇0 − 𝑡𝑡 − 𝑠𝑠1 𝑇𝑇0 − 𝑡𝑡 ⋅ ℎ

(2.11)

If 𝑓𝑓 𝑡𝑡 = 𝜆𝜆𝑔𝑔 𝑡𝑡 , 𝜆𝜆 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡. then we use the equality in (24).

(2.10)

Q(.) is monotonically decreasing  ⇒

= max
1

2𝑁𝑁0 ℎ
�

−∞

∞

𝑠𝑠0 𝑇𝑇0 − 𝑡𝑡 − 𝑠𝑠1 𝑇𝑇0 − 𝑡𝑡 ℎ 𝑡𝑡 𝑑𝑑𝑡𝑡

By substituting 𝑓𝑓 𝑡𝑡 = 𝑠𝑠0 𝑇𝑇0 − 𝑡𝑡 − 𝑠𝑠1 𝑇𝑇0 − 𝑡𝑡 and 𝑔𝑔 𝑡𝑡 = ℎ 𝑡𝑡 into (24) we get:



2. Detection theory Matched filter
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ℎ 𝑡𝑡 = 𝜆𝜆 𝑠𝑠0 𝑇𝑇0 − 𝑡𝑡 − 𝑠𝑠1 𝑇𝑇0 − 𝑡𝑡Under the assumption:

we can write 𝑃𝑃 𝑒𝑒 = 𝑄𝑄
𝑠𝑠0 𝑇𝑇0 − 𝑡𝑡 − 𝑠𝑠1 𝑇𝑇0 − 𝑡𝑡

2𝑁𝑁0
= 𝑄𝑄

𝑠𝑠0 − 𝑠𝑠1
𝑗

2𝑁𝑁0

And in the special case: 𝑠𝑠0 𝑡𝑡 = −𝑠𝑠1 𝑡𝑡 the impulse response is

ℎ 𝑡𝑡 = 𝑠𝑠0 𝑇𝑇0 − 𝑡𝑡 , 𝑃𝑃 𝑒𝑒 = 𝑄𝑄
2𝐸𝐸𝑏𝑏

𝑁𝑁0
,

where Eb=E0=E1 is the energy per bit

(2.12)

(2.13)



2. Detection theory Baseband correlation 
receiver

42

The same decision characteristics zk(T0) can be obtained by correlation receiver

ℎ 𝑇𝑇0 − 𝑡𝑡 = 𝑠𝑠0 𝑇𝑇0 − 𝑇𝑇0 − 𝑡𝑡 − 𝑠𝑠1 𝑇𝑇0 − 𝑇𝑇0 − 𝑡𝑡 = 𝑠𝑠0 𝑡𝑡 − 𝑠𝑠1 𝑡𝑡

The numerator of (2.10) will then be equal to the same convolution given by 
the last term of (2.10):

�̂�𝑠0 𝑡𝑡 − �̂�𝑠1 𝑡𝑡 = �
−∞

∞

𝑠𝑠0 𝑡𝑡 − 𝑠𝑠1 𝑡𝑡 ℎ 𝑇𝑇0 − 𝑡𝑡 𝑑𝑑𝑡𝑡

= �
−∞

∞

𝑠𝑠0 𝑇𝑇0 − 𝑡𝑡 − 𝑠𝑠1 𝑇𝑇0 − 𝑡𝑡 ℎ 𝑡𝑡 𝑑𝑑𝑡𝑡
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2. Detection theory Bandpass correlation 
receiver

Let the bandpass binary signal be of the form

where 𝑣𝑣0 𝑡𝑡 and 𝑣𝑣1 𝑡𝑡 are the baseband signals “0” and “1”, then using (2.11) we 
can form the matched filter impulse response in the form

If we further assume that 𝑣𝑣0 𝑡𝑡 = −𝑣𝑣1 𝑡𝑡 = 𝑣𝑣 𝑡𝑡 the matched filter impulse

response is

𝑠𝑠0 𝑡𝑡 = 𝐴𝐴𝑣𝑣0 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜃𝜃
𝑠𝑠1 𝑡𝑡 = 𝐴𝐴𝑣𝑣1 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜃𝜃

ℎ 𝑡𝑡 = 𝑠𝑠0 𝑇𝑇0 − 𝑡𝑡 − 𝑠𝑠1 𝑇𝑇0 − 𝑡𝑡

= 𝑣𝑣0 𝑇𝑇0 − 𝑡𝑡 − 𝑣𝑣1 𝑇𝑇0 − 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐 𝑇𝑇0 − 𝑡𝑡 + 𝜃𝜃

ℎ 𝑡𝑡 = 𝑣𝑣 𝑇𝑇0 − 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐 𝑇𝑇0 − 𝑡𝑡 + 𝜃𝜃 and

ℎ 𝑇𝑇0 − 𝑡𝑡 = 𝑣𝑣 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜃𝜃
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2. Detection theory Bandpass correlation 
receiver

The average bit error probability is

where 𝐸𝐸𝑏𝑏 is energy per bit given by

Bandpass correlation receiver

𝑃𝑃 𝑒𝑒 = 𝑄𝑄
2𝐸𝐸𝑏𝑏

𝑁𝑁0

𝐸𝐸𝑏𝑏 = �
−∞

∞
𝐴𝐴𝑗𝑣𝑣𝑗 𝑡𝑡 cos𝑗 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜃𝜃 𝑑𝑑𝑡𝑡

= 1
𝑗 ∫−∞

∞ 𝐴𝐴𝑗𝑣𝑣𝑗 𝑡𝑡 𝑑𝑑𝑡𝑡 + 1
𝑗 ∫−∞

∞ 𝐴𝐴𝑗𝑣𝑣𝑗 𝑡𝑡 cos𝑗 4𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 2𝜃𝜃 𝑑𝑑𝑡𝑡 = 𝐴𝐴2

𝑗 ∫−∞
∞ 𝑣𝑣𝑗 𝑡𝑡 𝑑𝑑𝑡𝑡
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3. Synchronization Carrier recovery

Synchronization in communication systems include: 

1. carrier recovery (phase and frequency recovery),  
2. symbol timing recovery, 
3. frame synchronization.

Carrier Recovery (CR)
• The carrier frequency of the received signal may differ from that of the 

nominal transmitter carrier frequency due to the deviation of the 
transmitter oscillator from the nominal frequency and due to the Doppler 
effect. 

• The carrier phase of the received signal consists of the three major 
components: 
 the random phase of the transmitter oscillator, 
 the phase due to the transmission delay,
 the channel phase response.
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3. Synchronization

The received signal affected by the above phenomena can be described as

where 𝑣𝑣 𝑡𝑡 is the baseband signal, 𝑓𝑓𝑑𝑑 and τ are the deviation of the received 
carrier frequency and the transmission delay, respectively and 𝑠𝑠 𝑡𝑡 is an AWGN.

Carrier recovery

𝑟𝑟 𝑡𝑡 = 𝐴𝐴𝑣𝑣 𝑡𝑡 − 𝜏𝜏 cos 2𝜋𝜋 𝑓𝑓𝑐𝑐 − 𝑓𝑓𝑑𝑑 𝑡𝑡 − 𝜏𝜏 + 𝜃𝜃 + 𝑠𝑠 𝑡𝑡 ,

The total phase error is 𝜑𝜑 = 𝜃𝜃 − 2𝜋𝜋 𝑓𝑓𝑐𝑐 − 𝑓𝑓𝑑𝑑 𝜏𝜏

Estimating the parameters 𝑓𝑓𝑑𝑑, τ, and θ is called synchronization.

Effect of Synchronization Errors: let us consider a BPSK system

with an AWGN process 𝑠𝑠 𝑡𝑡 having a noise spectral density N0/2 and symbols
𝑝𝑝𝑇𝑇 𝑡𝑡 . Our aim is to obtain estimates �𝜑𝜑, 𝑓𝑓𝑑𝑑, and �τ of the parameters 𝜑𝜑, 𝑓𝑓𝑑𝑑, and
𝜏𝜏, respectively.

𝑟𝑟 𝑡𝑡 = ±𝐴𝐴𝑝𝑝𝑇𝑇 𝑡𝑡 − 𝜏𝜏 cos 2𝜋𝜋 𝑓𝑓𝑐𝑐 − 𝑓𝑓𝑑𝑑 𝑡𝑡 + 𝜑𝜑 + 𝑠𝑠 𝑡𝑡 ,

(3.1)
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We can form the correlator demodulator based on these estimated parameters

3. Synchronization Carrier recovery

For the case �̂�𝜏 − 𝜏𝜏 ≤ 𝑇𝑇 the average error probability can be expressed in the 
form

where 

𝑃𝑃𝑏𝑏 = 𝑄𝑄 𝛼𝛼
2𝐸𝐸𝑏𝑏

𝑁𝑁0

𝛼𝛼 =
1
𝑇𝑇

�
max 𝜏𝜏,�𝜏𝜏

𝑇𝑇+min 𝜏𝜏,�𝜏𝜏
cos 2𝜋𝜋 𝑓𝑓𝑑𝑑 − 𝑓𝑓𝑑𝑑 𝑡𝑡 + 𝜑𝜑 − �𝜑𝜑 𝑑𝑑𝑡𝑡

Note that 𝛼𝛼 ≤ 1 and 𝛼𝛼 = 1 only if 𝑓𝑓𝑑𝑑 = 𝑓𝑓𝑑𝑑 , �𝜑𝜑 = 𝜑𝜑, �̂�𝜏 = 𝜏𝜏.
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3. Synchronization Carrier recovery

In the case when 𝑓𝑓𝑐𝑐 − 𝑓𝑓𝑑𝑑 << ⁄1 𝑇𝑇 i.e., the data rate is much higher than the
estimation error in 𝑓𝑓𝑑𝑑, then

𝛼𝛼 ≈ 1 −
�̂�𝜏 − 𝜏𝜏

𝑇𝑇
cos �𝜑𝜑 − 𝜑𝜑

Maximum likelihood carrier phase estimation

Under simplifying assumption 𝑓𝑓𝑑𝑑 = 0 and 𝜏𝜏 = 0 the equation (3.1) reduces to

𝑟𝑟 𝑡𝑡 = 𝐴𝐴𝑣𝑣 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑 + 𝑠𝑠 𝑡𝑡

Our aim is to obtain the carrier phase estimation �𝜑𝜑 based on the ML principle
The signal space in this case is 2-D and it is given by the basis functions

𝜑𝜑1 𝑡𝑡 = 𝑗
𝑣𝑣

𝑣𝑣 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 , 𝜑𝜑𝑗 𝑡𝑡 = 𝑗
𝑣𝑣

𝑣𝑣 𝑡𝑡 sin 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 .



3. Synchronization Carrier recovery

Using (1.12) the elements of the vector representing 𝑟𝑟 𝑡𝑡 are

𝑟𝑟1 = �
−∞

∞
𝑟𝑟 𝑡𝑡 𝜑𝜑1 𝑡𝑡 𝑑𝑑𝑡𝑡 =

𝐴𝐴 𝑣𝑣 cos 𝜑𝜑
2

+ 𝑠𝑠1,

𝑟𝑟𝑗 = �
−∞

∞
𝑟𝑟 𝑡𝑡 𝜑𝜑𝑗 𝑡𝑡 𝑑𝑑𝑡𝑡 =

𝐴𝐴 𝑣𝑣 sin 𝜑𝜑
2

+ 𝑠𝑠𝑗

where 𝑠𝑠1 and 𝑠𝑠𝑗 are zero-mean Gaussian random variable with variance N0/2.

The likelihood function is given by

𝑓𝑓 𝑟𝑟1, 𝑟𝑟𝑗|𝜑𝜑 =
1

𝜋𝜋𝑁𝑁0
exp −

⁄𝑟𝑟1 − 𝐴𝐴 𝑣𝑣 cos 𝜑𝜑 2
𝑗

+ ⁄𝑟𝑟𝑗 + 𝐴𝐴 𝑣𝑣 sin 𝜑𝜑 2
𝑗

𝑁𝑁0
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The ML estimator then maximizes the likelihood function or its log-likelihood 
equivalent.



�𝜑𝜑𝑀𝑀𝑀𝑀 = arg max
𝜑𝜑

𝑟𝑟1 cos 𝜑𝜑 − 𝑟𝑟𝑗 sin 𝜑𝜑 = arg max
𝜑𝜑

ln 𝑓𝑓 𝑟𝑟1, 𝑟𝑟𝑗|𝜑𝜑

= tan−1 −
𝑟𝑟𝑗

𝑟𝑟1
= tan−1 ∫−∞

∞ 𝑟𝑟 𝑡𝑡 𝑣𝑣 𝑡𝑡 sin 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑑𝑑𝑡𝑡

∫−∞
∞ 𝑟𝑟 𝑡𝑡 𝑣𝑣 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑑𝑑𝑡𝑡

3. Synchronization Carrier recovery

ML phase estimator can be implemented by the circuit

50

(3.2)



Other (more popular) way to get the ML phase estimator is obtained by 
differentiating the metric 𝑟𝑟1 cos 𝜑𝜑 − 𝑟𝑟𝑗 sin 𝜑𝜑 with respect to ϕ and setting the 
derivative to zero i.e. ⁄𝑑𝑑 𝑟𝑟1 cos 𝜑𝜑 − 𝑟𝑟𝑗 sin 𝜑𝜑 𝑑𝑑𝜑𝜑 = 0. The ML estimator has 
then to satisfy

3. Synchronization Carrier recovery

− �
−∞

∞
𝑟𝑟 𝑡𝑡 𝑣𝑣 𝑡𝑡 sin 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑 𝑀𝑀𝑀𝑀 𝑑𝑑𝑡𝑡 = 0

Such structure is generally known as phase-locked loop.

∫ dt𝑟𝑟 𝑡𝑡

integrator

−𝑣𝑣 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑� 𝜑𝜑�
𝜑𝜑�

If > 0 increase
If < 0 decrease 

51

(3.3)
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3. Synchronization Carrier recovery

Analysis of a simplified linearized PLL model

𝑟𝑟 𝑡𝑡 = 𝐴𝐴 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑 , 𝑥𝑥 𝑡𝑡 = sin 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + �𝜑𝜑 𝑡𝑡

The phase detector consists of a multiplier followed by a low-passed filter (LPF) 
that suppress the double frequency term. The detector converts the phase 
error ∆𝜑𝜑 𝑡𝑡 = 𝜑𝜑 − �𝜑𝜑 𝑡𝑡 into a voltage ue(t) = Kdfe(t), 

where 𝐾𝐾𝑑𝑑 =
𝑢𝑢𝑒𝑒

Δ𝜑𝜑
=

𝑢𝑢𝑒𝑒

𝜑𝜑 − �𝜑𝜑

The carrier 𝑟𝑟 𝑡𝑡 to be “locked” the and reference signal 𝑥𝑥 𝑡𝑡 are

VCO
fs

Phase detector
F(p), g(t) Ko/p

Kd∆ϕ ue ucInput Output

r(t), fc,ϕ LPF

x(t),    ,    𝜑𝜑�𝑓𝑓𝑐𝑐
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3. Synchronization

VCO (Voltage controlled oscillator) gain is defined as 𝐾𝐾𝑜𝑜 = Δ𝜔𝜔𝑜𝑜
𝑢𝑢𝑐𝑐

,

where ∆ωo is the frequency deviation from natural frequency ωo, on which the 
VCO oscillates at uc = 0. 

𝑑𝑑 �𝜑𝜑 𝑡𝑡
𝑑𝑑𝑡𝑡

= 𝐾𝐾𝑜𝑜𝐾𝐾𝑑𝑑 𝜑𝜑 − �𝜑𝜑 𝑡𝑡 ∗ 𝑔𝑔 𝑡𝑡 →
𝑀𝑀𝑇𝑇

𝑝𝑝 �Φ 𝑝𝑝 =𝐾𝐾𝑜𝑜𝐾𝐾𝑑𝑑 Φ 𝑝𝑝 − �Φ 𝑝𝑝 𝐹𝐹 𝑝𝑝

As the phase deviation at the VCO output is Δ �𝜔𝜔 = 𝑑𝑑 �𝜑𝜑 𝑡𝑡
𝑑𝑑𝑡𝑡

, we can write

where 𝑔𝑔 𝑡𝑡 = 𝐿𝐿−1 𝐹𝐹 𝑝𝑝 is the LPF impulse response  (operators L and LT 
denote the Laplace Transform)

The ratio of phase images is: 𝐻𝐻 𝑝𝑝 =
�Φ 𝑝𝑝
Φ 𝑝𝑝

=
𝐾𝐾𝑜𝑜𝑝𝑝−1𝐾𝐾𝑑𝑑𝐹𝐹 𝑝𝑝

1 − 𝐾𝐾𝑜𝑜𝑝𝑝−1𝐾𝐾𝑑𝑑𝐹𝐹 𝑝𝑝

Carrier recovery

(3.4)
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3. Synchronization

Because 𝐾𝐾𝑑𝑑 Φ 𝑝𝑝 − �Φ 𝑝𝑝 = 𝐾𝐾𝑑𝑑 1 − 𝐻𝐻 𝑝𝑝 Φ 𝑝𝑝 we can simply find that the 
error voltage satisfies the relation

𝑈𝑈𝑒𝑒 𝑝𝑝 =
Φ 𝑝𝑝 𝐾𝐾𝑑𝑑

1 − 𝐾𝐾𝑜𝑜𝑝𝑝−1𝐾𝐾𝑑𝑑𝐹𝐹 𝑝𝑝

To investigate the PLL response to various stimuli we will apply the Limit 
theorem for a function and its Laplace image

lim
𝑡𝑡→∞

𝑢𝑢𝑒𝑒 𝑡𝑡 = lim
𝑝𝑝→0

𝑝𝑝 𝑈𝑈𝑒𝑒 𝑝𝑝

PLL response to a step change of the phase Φ(p) = ∆ϕ/p

lim
𝑡𝑡→∞

𝑢𝑢𝑒𝑒 𝑡𝑡 = lim
𝑝𝑝→0

𝑝𝑝Δ𝜑𝜑𝐾𝐾𝑑𝑑

𝑝𝑝 − 𝐾𝐾𝑜𝑜𝐾𝐾𝑑𝑑𝐹𝐹 𝑝𝑝
= 0

Carrier recovery

(3.5)
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3. Synchronization

PLL response to a step change of the frequency Φ(p) = ∆ϕ/p2

lim
𝑡𝑡→∞

𝑢𝑢𝑒𝑒 𝑡𝑡 = lim
𝑝𝑝→0

Δ𝑓𝑓𝑐𝑐𝐾𝐾𝑑𝑑

𝑝𝑝 − 𝐾𝐾𝑜𝑜𝐾𝐾𝑑𝑑𝐹𝐹 𝑝𝑝
=

Δ𝑓𝑓𝑐𝑐

𝐾𝐾𝑜𝑜𝐹𝐹 0 velocity error

The error voltage ue(t) will approach zero, if F(p)=const./p i.e. if the LPF behaves 
like an integrator. 

Carrier recovery
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3. Synchronization Carrier recovery

Phase locked loop for modulated signal

For the BPSK modulated signal the Carrier phase can be tracked using a squarer. 
The received signal can be expressed as

𝑟𝑟 𝑡𝑡 = 𝐴𝐴 �
𝑛𝑛

𝑏𝑏𝑛𝑛𝑝𝑝𝑇𝑇 𝑡𝑡 − 𝑠𝑠𝑇𝑇 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑

The effect of the data signal (𝑏𝑏𝑛𝑛= ±1) can be removed by  squaring

𝑟𝑟𝑗 𝑡𝑡 =
𝐴𝐴𝑗

2
1 + cos 2𝜋𝜋2𝑓𝑓𝑐𝑐𝑡𝑡 + 2𝜑𝜑

(3.6)
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3. Synchronization

Squaring loop for BPSK

Carrier recovery

Squarer
(.)2

VCO

Phase 
detector

divider

PLL

BPF

≈ cos 2𝜋𝜋2𝑓𝑓𝑐𝑐𝑡𝑡 + 2𝜑𝜑

𝑟𝑟 𝑡𝑡

LPF

≈ cos 2𝜋𝜋2𝑓𝑓𝑟𝑟𝑡𝑡 + 2𝜑𝜑𝑟𝑟

cos 2𝜋𝜋𝑓𝑓𝑟𝑟 𝑡𝑡 + 2𝜑𝜑𝑟𝑟

4𝜋𝜋𝑓𝑓𝑟𝑟/2

Note that since we are only able to determine 2𝜑𝜑𝑟𝑟, there is a phase ambiguity 
of π in our estimate. To overcome this problem, the data must be differentially 
encoded and decoded.

For the case of M-ary PSK modulation where 𝜑𝜑𝑖𝑖 = ⁄2𝜋𝜋𝑠𝑠 𝑀𝑀 𝑠𝑠 = 0,1,2, . . . , 𝑀𝑀
we use squaring rM(t) and dividing by M. 
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3. Synchronization3. Synchronization Carrier recovery

Costas loop for BPSK
It uses similar idea to the squaring loop - the data signal is removed by the 
multiplication (in Multiplier 3) before the loop filter.

VCO

π/2

Multiplier  1

Multiplier 2
LPF

Multiplier 3

Output

Demodulation

Input

DC
( )⋅sign

𝑟𝑟 𝑡𝑡

cos 2𝜋𝜋𝑓𝑓𝑟𝑟𝑡𝑡 + 2𝜑𝜑𝑟𝑟 𝑡𝑡

𝑠𝑠 𝑡𝑡 =
1
2

𝑣𝑣 𝑡𝑡 cos 𝜑𝜑𝑒𝑒 𝑡𝑡

𝑞 𝑡𝑡 =
1
2

𝑣𝑣 𝑡𝑡 sin 𝜑𝜑𝑒𝑒 𝑡𝑡

LPF

LPF 𝑦𝑦 𝑡𝑡

𝑢𝑢𝑒𝑒 𝑡𝑡𝑢𝑢𝑐𝑐 𝑡𝑡
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𝑦𝑦 𝑡𝑡 = sign
1
2

𝑣𝑣 𝑡𝑡 cos 𝜑𝜑𝑒𝑒 𝑡𝑡 = �sign 𝑣𝑣 𝑡𝑡
𝜑𝜑𝑒𝑒 𝑡𝑡 →0

𝑢𝑢𝑒𝑒 𝑡𝑡 = �
1
2

𝑣𝑣 𝑡𝑡 sin 𝜑𝜑𝑒𝑒 𝑡𝑡
𝜑𝜑𝑒𝑒→0

≈
𝐸𝐸𝑏𝑏

2𝑇𝑇
𝜑𝜑𝑒𝑒

−π 0

-1

-0.5

0

0.5

π−π/2 π/2

u
t

e(
)

θe( )t

a) b)

Dependence of the error voltage 
𝑢𝑢𝑒𝑒 𝑡𝑡 on the phase error 𝜑𝜑𝑒𝑒 𝑡𝑡 . 

a) without sign(.) block, 
b) with sign(.) block

Output voltage is

Error voltage is

3. Synchronization3. Synchronization Carrier recovery



3. Synchronization3. Synchronization Carrier recovery

Costas loop for QPSK

𝑟𝑟 𝑡𝑡 = 𝐼𝐼 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑 + 𝑄𝑄 𝑡𝑡 sin 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑

𝑢𝑢𝑒𝑒 𝑡𝑡 =
1
2

𝐼𝐼 𝑡𝑡 + 𝑄𝑄 𝑡𝑡 sin 𝜑𝜑𝑒𝑒 𝑡𝑡 +
1
2

𝐼𝐼 𝑡𝑡 sign 𝑄𝑄 𝑡𝑡 − 𝑄𝑄 𝑡𝑡 sign 𝐼𝐼 𝑡𝑡 cos 𝜑𝜑𝑒𝑒 𝑡𝑡

VCO

π/2

Multiplier  1

Multiplier  2

-

DC
( )⋅sign

( )⋅sign
C

  

  

𝑢𝑢𝑒𝑒 𝑡𝑡

LPF

𝑢𝑢𝑐𝑐 𝑡𝑡

𝑠𝑠𝑒𝑒 𝑡𝑡 =
1
2

𝐼𝐼 𝑡𝑡 cos 𝜑𝜑𝑒𝑒 𝑡𝑡 + 𝑄𝑄 𝑡𝑡 sin 𝜑𝜑𝑒𝑒 𝑡𝑡

𝑞𝑒𝑒 𝑡𝑡 =
1
2

𝑄𝑄 𝑡𝑡 cos 𝜑𝜑𝑒𝑒 𝑡𝑡 − 𝐼𝐼 𝑡𝑡 sin 𝜑𝜑𝑒𝑒 𝑡𝑡

𝑠𝑠0 𝑡𝑡 = sign 𝐼𝐼 𝑡𝑡 |𝜑𝜑𝑒𝑒→0

𝑞0 𝑡𝑡 = sign 𝑄𝑄 𝑡𝑡 |𝜑𝜑𝑒𝑒→0

Input

𝑟𝑟 𝑡𝑡

cos 2𝜋𝜋𝑓𝑓𝑟𝑟𝑡𝑡 + 𝜑𝜑𝑟𝑟 𝑡𝑡

60
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3. Synchronization3. Synchronization Symbol timing recovery
(STR)

Let fd = 0 and carrier phase synchronization was achieved i.e. the value of ϕ is
known. Then we can write

𝑟𝑟 𝑡𝑡 = 𝐴𝐴𝑣𝑣 𝑡𝑡 − 𝜏𝜏 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑 + 𝑠𝑠 𝑡𝑡 ,

ML symbol timing estimation with training signal

Let the baseband signal v(t) be known i.e., a training signal is sent to allow the
receiver to ensure the symbol timing synchronization. The goal of STR is to 
work out the ML estimator for τ. First we will create a basis 𝜑𝜑𝑖𝑖 𝑡𝑡 𝑖𝑖=1

∞ and 
represent the received signals by vectors

𝐫𝐫 = 𝐬𝐬 𝜏𝜏 + 𝐧𝐧.

Where the i-th elements of vector r is

𝑟𝑟𝑖𝑖 = 𝑠𝑠𝑖𝑖 𝜏𝜏 + 𝑠𝑠𝑖𝑖 = �
−∞

∞
𝐴𝐴𝑣𝑣 𝑡𝑡 − 𝜏𝜏 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑 𝜑𝜑𝑖𝑖 𝑡𝑡 𝑑𝑑𝑡𝑡 + �

−∞

∞
𝑠𝑠 𝑡𝑡 𝜑𝜑𝑖𝑖 𝑡𝑡 𝑑𝑑𝑡𝑡

(3.7)
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𝑓𝑓 𝐫𝐫𝐾𝐾|𝜏𝜏 = �
𝑘𝑘=1

𝐾𝐾
1

2𝜋𝜋𝑁𝑁0
exp −

𝑟𝑟𝑘𝑘 − 𝑠𝑠𝑘𝑘 𝜏𝜏 𝑗

𝑁𝑁0
=

1
2𝜋𝜋𝑁𝑁0

⁄𝐾𝐾 𝑗 exp − �
𝑘𝑘=1

𝐾𝐾
𝑟𝑟𝑘𝑘 − 𝑠𝑠𝑘𝑘 𝜏𝜏 𝑗

𝑁𝑁0

3. Synchronization3. Synchronization Symbol timing recovery
(STR)

A sufficient statistic for the estimation of τ is the whole vector r. Thus we start 
by the truncated observation vector rK and then let K increase to infinity. 

ln𝑓𝑓 𝐫𝐫𝐾𝐾|𝜏𝜏 = − 𝐾𝐾
𝑗

ln 2𝜋𝜋𝑁𝑁0 − 1
𝑁𝑁0

∑𝑘𝑘=1
𝐾𝐾 𝑟𝑟𝑘𝑘 − 𝑠𝑠𝑘𝑘 𝜏𝜏 𝑗

then

The maximum of ln𝑓𝑓 𝐫𝐫|𝜏𝜏 over τ is equivalent to finding the signal 𝑠𝑠𝑘𝑘 𝜏𝜏 that 
minimizes the Euclidean distance

D 𝐫𝐫𝐾𝐾, 𝑠𝑠𝑘𝑘 𝜏𝜏 = ∑𝑘𝑘=1
𝐾𝐾 𝑟𝑟𝑘𝑘 − 𝑠𝑠𝑘𝑘 𝜏𝜏 𝑗 = ∑𝑘𝑘=1

𝐾𝐾 𝑟𝑟𝑘𝑘
𝑗 − 2 ∑𝑘𝑘=1

𝐾𝐾 𝑟𝑟𝑘𝑘𝑠𝑠𝑘𝑘 𝜏𝜏 + ∑𝑘𝑘=1
𝐾𝐾 𝑠𝑠𝑘𝑘 𝜏𝜏 𝑗

The term ∑𝑘𝑘=1
𝐾𝐾 𝑟𝑟𝑘𝑘

𝑗 is common to all decision metrics and, hence, it may be 
ignored.

(3.8)
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3. Synchronization3. Synchronization Symbol timing recovery
(STR)

The ML estimator is then given by �̂�𝜏𝑀𝑀𝑀𝑀 = arg max
𝜏𝜏

�
𝑘𝑘=1

𝐾𝐾

2𝑟𝑟𝑘𝑘𝑠𝑠𝑘𝑘 𝜏𝜏 − 𝑠𝑠𝑘𝑘 𝜏𝜏 𝑗

Now, letting K go to infinity, we have

�̂�𝜏𝑀𝑀𝑀𝑀 = arg max
𝜏𝜏

�2𝐴𝐴 �
−∞

∞
𝑟𝑟 𝑡𝑡 𝑣𝑣 𝑡𝑡 − 𝜏𝜏 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑 𝑑𝑑𝑡𝑡 −

�−𝐴𝐴𝑗 �
−∞

∞
𝑣𝑣𝑗 𝑡𝑡 − 𝜏𝜏 cos𝑗 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑 𝑑𝑑𝑡𝑡

= arg max
𝜏𝜏

�
−∞

∞
𝑟𝑟 𝑡𝑡 𝑣𝑣 𝑡𝑡 − 𝜏𝜏 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑 𝑑𝑑𝑡𝑡

It is obvious that the ML estimator has to satisfy

𝑑𝑑
𝑑𝑑𝜏𝜏

�
−∞

∞
�𝑟𝑟 𝑡𝑡 𝑣𝑣 𝑡𝑡 − 𝜏𝜏 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑 𝑑𝑑𝑡𝑡
𝜏𝜏=�𝜏𝜏𝑀𝑀𝑀𝑀

= 0 (3.9)



3. Synchronization3. Synchronization Symbol timing recovery
(STR)

For the case where the training signal is a known sequence of BPSK pulses, i.e. 
𝑣𝑣 𝑡𝑡 = ∑𝑖𝑖 𝑏𝑏𝑖𝑖𝑝𝑝𝑇𝑇 𝑡𝑡 − 𝑠𝑠𝑇𝑇 , the necessary condition in (3.9) becomes

�
𝑖𝑖

𝑏𝑏𝑖𝑖
𝑑𝑑�̃�𝑟
𝑑𝑑𝜏𝜏

�̂�𝜏𝑀𝑀𝑀𝑀 − 𝑠𝑠𝑇𝑇 = 0,

where �̃�𝑟 = 𝑟𝑟 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑 ∗ 𝑝𝑝𝑇𝑇 𝜏𝜏

To solve for �̂�𝜏𝑀𝑀𝑀𝑀 we can employ a feedback structure, known as delay-locked
loop (DLL).
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VCC: voltage controlled clock

(3.10)



Non-decision-directed ML symbol timing estimation

3. Synchronization3. Synchronization Symbol timing recovery
(STR)

Let a finite number of bits 𝑣𝑣 𝑡𝑡 = ∑𝑖𝑖 𝑏𝑏𝑖𝑖𝑝𝑝𝑇𝑇 𝑡𝑡 − 𝑠𝑠𝑇𝑇 defined by a vector of symbols 
𝐛𝐛 = 𝑏𝑏1, 𝑏𝑏𝑗, … , 𝑏𝑏𝐼𝐼 be transmitted using the BSPK. Then for each bit sequence 𝐛𝐛, 
we can create an equation describing the received signal using vector notation 
based on the basis in the previous section

As in the previous case we assume the truncated observation vector rK and then 
let K increase to infinity. Symbol vector 𝐛𝐛 will be modelled as a random vector 
with equal-probable bit patterns. The likelihood function is obtained by 
averaging the conditional density function over all possible bit patterns

𝐫𝐫 = 𝐬𝐬 𝜏𝜏, 𝐛𝐛 + 𝐧𝐧.

𝑓𝑓 𝐫𝐫𝐾𝐾|𝜏𝜏 = 𝑓𝑓 𝐫𝐫𝐾𝐾|𝜏𝜏, 𝐛𝐛 =
1
2𝐼𝐼 �

𝐛𝐛

𝑓𝑓 𝐫𝐫𝐾𝐾|𝜏𝜏, 𝐛𝐛

=
1
2𝐼𝐼 �

𝐛𝐛

�
𝑘𝑘=1

𝐾𝐾
1

2𝜋𝜋𝑁𝑁0
exp −

𝑟𝑟𝑘𝑘 − 𝑠𝑠𝑘𝑘 𝜏𝜏, 𝐛𝐛 𝑗

𝑁𝑁0
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Letting K approaches infinity and removing constant term we have

3. Synchronization3. Synchronization Symbol timing recovery
(STR)

�̂�𝜏𝑀𝑀𝑀𝑀 = arg max
𝜏𝜏

ln
1
2𝐼𝐼 �

𝐛𝐛

exp −
1

𝑁𝑁0
�
𝑘𝑘=1

∞

𝑟𝑟𝑘𝑘 − 𝑠𝑠𝑘𝑘 𝜏𝜏, 𝐛𝐛 𝑗

= arg max
𝜏𝜏

ln
1
2𝐼𝐼 �

𝐛𝐛

exp
2𝐴𝐴
𝑁𝑁0

�
𝑘𝑘=1

∞

𝑏𝑏𝑖𝑖�̃�𝑟 𝜏𝜏 + 𝑠𝑠𝑇𝑇

= arg max
𝜏𝜏

ln �
𝑖𝑖

cosh
2𝐴𝐴
𝑁𝑁0

�̃�𝑟 𝜏𝜏 + 𝑠𝑠𝑇𝑇 = arg max
𝜏𝜏

�
𝑖𝑖

ln cosh
2𝐴𝐴
𝑁𝑁0

�̃�𝑟 𝜏𝜏 + 𝑠𝑠𝑇𝑇
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For small 𝑥𝑥 (in our case for low SNR) we can use approximation ln cosh 𝑥𝑥 ≈ 1
𝑗

𝑥𝑥𝑗

then we can rewrite (3.11) to

�̂�𝜏𝑀𝑀𝑀𝑀 ≈ arg max
𝜏𝜏

�
𝑖𝑖

�̃�𝑟𝑗 𝜏𝜏 + 𝑠𝑠𝑇𝑇

(3.11)



The ML estimator must satisfy condition

3. Synchronization3. Synchronization Symbol timing recovery
(STR)

�
𝑖𝑖

𝑑𝑑�̃�𝑟𝑗

𝑑𝑑𝜏𝜏
�̂�𝜏𝑀𝑀𝑀𝑀 − 𝑠𝑠𝑇𝑇 = 0,

which can be implemented by a feedback structure known as 
Delay-locked loop (DLL)

67
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The derivative of �̃�𝑟𝑗 𝜏𝜏 + 𝑠𝑠𝑇𝑇 can be further approximated by 

3. Synchronization3. Synchronization Symbol timing recovery
(STR)

𝑑𝑑�̃�𝑟𝑗

𝑑𝑑𝜏𝜏
𝜏𝜏 = lim

𝛿𝛿→0

�̃�𝑟𝑗 𝜏𝜏 + 𝑠𝑠𝑇𝑇 + 𝛿𝛿 − �̃�𝑟𝑗 𝜏𝜏 + 𝑠𝑠𝑇𝑇 − 𝛿𝛿
2𝛿𝛿

,

where δ is in reality a short time interval before and after the sampling points 𝜏𝜏 + 𝑠𝑠𝑇𝑇.
It allows us to construct the ML estimator known as the early-late gate DLL.   

(3.12)



4. Equalization Introduction

As some (mobile) channels have time-varying characteristics adaptive equalizers 
must be used.

Channels containing transmitter (TX), propagation environment, and receiver 
(RX) have a non-flat frequency response due to:  
• Transmitting filter (TF): pulse-shaping, signal bandwidth limitation.
• Channel filter (CF): distributed reactances (wire cable), multipath 

propagation (wireless system), chromatic dispersion (fiber optic system).
• Receiving filter (RF): input noise elimination. 

The goal of equalization is:  
• Inter-symbol interferences (ISI) elimination.
• Flattening of the channel frequency response.

Equalizer types:  
• Linear: Zero forcing, Minimum mean square (MMSE),
• Nonlinear: Decision-feedback (DFE), Maximum likelihood sequence 

estimation (MLSE).
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Inter symbol 
interference (ISI)

Let us consider a digital communication system by means of M-ary PAM that 
consists of a TF having a transfer function HT(f), the linear CF HC(f) with AWGN 
n(t), and an RF with transfer function HR(f), a sampler S that periodically samples 
the output of the receiving filter.

Signals at the TF output and RF input may be expressed as

𝑣𝑣 𝑡𝑡 = �
𝑛𝑛=−∞

∞

𝑏𝑏𝑛𝑛ℎ𝑇𝑇 𝑡𝑡 − 𝑠𝑠𝑇𝑇 𝑟𝑟 𝑡𝑡 = �
𝑛𝑛=−∞

∞

𝑏𝑏𝑛𝑛ℎ𝑇𝑇 𝑡𝑡 − 𝑠𝑠𝑇𝑇 ∗ ℎ𝐶𝐶 𝑡𝑡 + 𝑠𝑠 𝑡𝑡

where 𝑏𝑏𝑛𝑛 is the n-th transmitted symbol, and ∗ stands for convolution.

and

HT(f) HC(f) HR(f)

Channel

Σ
TF CF RF

S

bn r(t)

n(t)

y(t)s(t) ymv(t)

4. Equalization

(4.1)
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Our aim is design of a bandlimited TF. It will be done first under the 
assumption that there is no channel distortion i.e. HC(f) = 1. The RF will then 
be realized as a matched filter with the transfer function HR(f)=HT

*(f). Let its 
output y(t) will be periodically sampled at the times t=mT then

Inter symbol 
interference (ISI)

y 𝑚𝑚𝑇𝑇 = ℎ 0 𝑏𝑏𝑚𝑚 + �
𝑛𝑛=−∞
𝑚𝑚≠𝑛𝑛

∞

𝑏𝑏𝑛𝑛ℎ 𝑚𝑚𝑇𝑇 − 𝑠𝑠𝑇𝑇 + 𝜈𝜈 𝑚𝑚𝑇𝑇 ,

where ℎ 𝑡𝑡 = ℎ𝑇𝑇 𝑡𝑡 ∗ ℎ𝑅𝑅 𝑡𝑡 and 𝜈𝜈 𝑡𝑡 is the output response of the matched 
filter to the input AWGN process 𝑠𝑠 𝑡𝑡 . 
The second term in (4.2) expresses the undesirable effect of all other 
transmitted bits on decoding the m-th bit. To remove the effect of ISI, it is 
necessary and sufficient that ℎ 𝑠𝑠𝑇𝑇 = ℎ 𝑚𝑚𝑇𝑇 − 𝑠𝑠𝑇𝑇 must satisfy the condition

(4.2)

ℎ𝑖𝑖 = �1, for 𝑠𝑠 = 0,
0 for 𝑠𝑠 ≠ 0.

(4.3)

4. Equalization



Inter symbol 
interference (ISI)

For the TF design it is better to express the condition (4.3) in the frequency 
domain. It is generally known that the spectrum of sampled signal ℎ 𝑡𝑡 with 
the sampling period T is

𝐻𝐻𝑠𝑠 𝑓𝑓 =
1
𝑇𝑇

�
𝑘𝑘=−∞

∞
𝐻𝐻 𝑓𝑓 −

𝑘𝑘
𝑇𝑇

It is obvious that the sampled response ℎ 𝑠𝑠𝑇𝑇 given by (4.3) corresponds to the  
Dirac impulse 𝛿𝛿 𝑡𝑡 whose spectrum is 𝐹𝐹 𝛿𝛿 𝑡𝑡 = 1. Thus, under assumption that 
𝑅𝑅 = 1/𝑇𝑇 we can rewrite (4.4) to the form known as the Nyquist pulse-shaping 
criterion     

(4.4)

�
𝑘𝑘=−∞

∞
𝐻𝐻 𝑓𝑓 − 𝑘𝑘𝑅𝑅 = 𝑇𝑇 (4.5)

The criterion (4.5) can be met if the spectrum of the sampled signal ℎ 𝑠𝑠𝑇𝑇 is 
constant over all frequencies i.e.  

H 𝑓𝑓 = �𝑇𝑇, for 𝑓𝑓 ≤ 0.5𝑅𝑅,
0, for 𝑓𝑓 > 0.5𝑅𝑅.
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(4.6)

4. Equalization
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Inter symbol 
interference (ISI)

The relation (4.6) is the transfer function of the Nyquist filter (ideal lowpass 
filter) with the cut-off frequency of BT = 0.5R. Its impulse response is

ℎ(𝑡𝑡) =
sin 2𝜋𝜋𝐵𝐵𝑇𝑇𝑡𝑡

2𝜋𝜋𝐵𝐵𝑇𝑇𝑡𝑡
= sinc 2𝜋𝜋𝐵𝐵𝑇𝑇𝑡𝑡

Frequency response of sampled Nyquist filter transfer function

f                               

4. Equalization



Inter symbol 
interference (ISI)

𝐻𝐻𝑅𝑅𝐶𝐶 𝑓𝑓 =

𝑇𝑇, for 0 ≤ 𝑓𝑓 <
1 − 𝛽𝛽

2𝑇𝑇
,

𝑇𝑇
2

1 − sin
𝜋𝜋𝑇𝑇
𝛽𝛽

𝑓𝑓 −
1

2𝑇𝑇
, for

1 − 𝛽𝛽
2𝑇𝑇

≤ 𝑓𝑓 <
1 + 𝛽𝛽

2𝑇𝑇
,

0, for
1 + 𝛽𝛽

2𝑇𝑇
≤ 𝑓𝑓 ,

Note that the Nyquist filter is unrealizable. The constant spectrum of the 
sampled impulse response can be realized also by so called raised-cosine filter
(RC filter) whose transfer function is

where the roll-off factor 𝛽𝛽 is a measure of the excess bandwidth of the filter, 
i.e. the bandwidth occupied beyond the Nyquist bandwidth BT. 

The impulse response of the raised-cosine filter  is

ℎ𝑅𝑅𝐶𝐶 𝑡𝑡 = sinc 𝜋𝜋𝑅𝑅𝑡𝑡
cos 𝛽𝛽 𝜋𝜋𝑅𝑅𝑡𝑡

1 − 2𝛽𝛽𝑅𝑅𝑡𝑡 𝑗
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Inter symbol 
interference (ISI)

75

As mentioned above HR(f)=HT
*(f) and for HC(f) = 1 the total impulse response is

Hence, the TF filter transfer function is

It is known as the square root raised-cosine (SRC) response.  

𝐻𝐻𝑅𝑅𝐶𝐶 𝑓𝑓 = HT 𝑓𝑓 HT
∗ 𝑓𝑓 .

HT 𝑓𝑓 = H𝑅𝑅𝐶𝐶 𝑓𝑓 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1 β=0

β=1.0
β
β
β
β

=0.8
=0.6
=0.4
=0.2

β=0.2
β
β
β
β

=0.4
=0.6
=0.8
=1.0

square root
raised-cosine

raised-cosine

-3 -2 -1 1 2

-0.2

0.2

0.6

1

=0, 0.2,...,1.0β

raised-cosine

(4.7)

4. Equalization
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Inter symbol 
interference (ISI)

It is obvious from the raised-cosine impulse response that pulse sidelobes go 
through zero at the sample times adjacent to the main lobe of the pulse.

T 2T-2T -T t

4. Equalization
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Discrete time model

Let we have the sequence of information symbols denoted by 𝐼𝐼𝑘𝑘 and a 
common (not constant) channel transfer function HC(f). Further, let overall 
transfer function is

To achieve the Nyquist condition the filter cascade 𝐻𝐻𝑇𝑇 𝑓𝑓 𝐻𝐻𝐶𝐶 𝑓𝑓 𝐻𝐻𝑅𝑅 𝑓𝑓 must 
fullfil the relation (4.5). It can be achiewed when

• RF is constructed to be the matched filter, i.e. 𝐻𝐻𝑅𝑅 𝑓𝑓 = HT
∗ 𝑓𝑓 HC

∗ 𝑓𝑓 . The TF is 
then chosen so that (4.5) is satisfied. 

• The TF is fixed and the RF is chosen so that (4.5) is satisfied.

An analog realization of TF and RF filters is very difficult ⇒ we use digital filter 
called equalizer which can remove (or suppress) ISI. The 𝐻𝐻𝑇𝑇 𝑓𝑓 , 𝐻𝐻𝐶𝐶 𝑓𝑓 , and 
𝐻𝐻𝑅𝑅 𝑓𝑓 filters are represented by an equivalent digital LTI filters. 

𝐻𝐻 𝑓𝑓 = 𝐻𝐻𝑇𝑇 𝑓𝑓 𝐻𝐻𝐶𝐶 𝑓𝑓 𝐻𝐻𝑅𝑅 𝑓𝑓 .

4. Equalization



Discrete time model

78

Discrete-time linear filter model

Usually, the equalizer consists of two parts a noise-whitening filter 𝐻𝐻𝑊𝑊 𝑧𝑧 and
an equalizing filter 𝐻𝐻𝐸𝐸 𝑧𝑧 . The effect of 𝐻𝐻𝑊𝑊 𝑧𝑧 is to “whiten” the noise 
sequence so that the noise samples are uncorrelated.
We can reorganize the blocks to get the linear model suitable for analysis.

HT(z) HC(z) HR(z)

Channel

Σ
TF CF RF

HW(z), HE(z)
Ik 𝐼𝐼𝑘𝑘

Equalizer

AWGN nk

Colored 
Gaussian noise

𝐼𝐼𝑘𝑘
HT(z), HC(z), HR(z) Σ

TF + CF + RF

HE(z)
Ik 𝐼𝐼𝑘𝑘

Equalizer

AWGN nk

HW(z)

4. Equalization



It is obvious that 𝐻𝐻𝑊𝑊 𝑧𝑧 depends only on 𝐻𝐻𝑅𝑅 𝑧𝑧 .  Let 

𝐺𝐺 𝑧𝑧 = 𝐻𝐻𝑇𝑇 𝑧𝑧 𝐻𝐻𝐶𝐶 𝑧𝑧 𝐻𝐻𝑅𝑅 𝑧𝑧
𝐻𝐻 𝑧𝑧

𝐻𝐻𝑊𝑊 𝑧𝑧 . 

The communication system from the input to the noise whitening filter output 
can then be represented by the discrete-time white-noise linear filter model. 

Discrete time model4. Equalization

𝐼𝐼𝑘𝑘 = �
𝑗𝑗

𝐼𝐼𝑗𝑗𝑔𝑔𝑘𝑘−𝑗𝑗 + 𝑠𝑠𝑘𝑘 = 𝐼𝐼𝑘𝑘𝑔𝑔0 + �
𝑗𝑗≠𝑘𝑘

𝐼𝐼𝑗𝑗𝑔𝑔𝑘𝑘−𝑗𝑗 + 𝑠𝑠𝑘𝑘

where 𝑔𝑔𝑘𝑘 is the impulse response corresponding to the transfer function 
𝐺𝐺 𝑧𝑧 , and 𝑠𝑠𝑘𝑘 is an AWGN sequence. The equalizer output sequence is 
given by
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(4.8)

𝐼𝐼𝑘𝑘 = �
𝑗𝑗

𝐼𝐼𝑘𝑘−𝑗𝑗ℎ𝐸𝐸𝑗𝑗 (4.9)



𝐻𝐻𝐸𝐸 𝑧𝑧 =
1

𝐺𝐺 𝑧𝑧

Zero-forcing (ZF) 
equalizer4. Equalization

Let the ISI be completely removed i.e. 𝐼𝐼𝑘𝑘 = 𝐼𝐼𝑘𝑘 (while noise is not present) and in 
compliance with (4.7) 𝐻𝐻𝑇𝑇 𝑧𝑧 𝐻𝐻𝑅𝑅 𝑧𝑧 𝐻𝐻𝑊𝑊 𝑧𝑧 satisfy (4.5). Then 𝐻𝐻𝐸𝐸 𝑧𝑧 𝐺𝐺 𝑧𝑧 = 1 and

80

This technique is known as zero-forcing equalization since the ISI components 
at the equalizer output are forced to zero.

Equalizer 
Implementation 

FIR filter
T T T T

𝐼𝐼𝑘𝑘

Algorithm for coefficient adjustment

Σ

c-N c-N+1 c-N+2 cN

𝐼𝐼𝑘𝑘
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𝐼𝐼𝑘𝑘 = �
𝑗𝑗=−𝑁𝑁

𝑁𝑁

𝐼𝐼𝑘𝑘−𝑗𝑗𝑐𝑐𝑗𝑗 𝑘𝑘 = −2𝑁𝑁, ⋯ , 2𝑁𝑁

For (2N + 1) filter taps we generally get 

In matrix notation we get  �̂�𝐈 = �̃�𝐈 � 𝐜𝐜.
For the zero−forcing equalization the input �̃�𝐈 matrix is a (2N + 1) × (2N + 1) 
square matrix.

�̃�𝐈 =

𝐼𝐼0 𝐼𝐼−1
𝐼𝐼1 𝐼𝐼0

⋯ 𝐼𝐼−𝑗𝑁𝑁
⋯ 𝐼𝐼−𝑗𝑁𝑁+1

⋮ ⋮
𝐼𝐼𝑗𝑁𝑁 𝐼𝐼𝑗𝑁𝑁−1

⋮
⋯ 𝐼𝐼0

Because 𝐻𝐻𝐸𝐸 𝑧𝑧 𝐺𝐺 𝑧𝑧 = 1, in the time domain we can write

�
𝑗𝑗=−𝑁𝑁

𝑁𝑁

ℎ𝑒𝑒 𝑗𝑗 𝑔𝑔 𝑘𝑘 − 𝑗𝑗 = 𝛿𝛿 𝑘𝑘

81

(4.11)

(4.10)
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Example 4.1 Let the distorted set of 
pulse samples shown in figure be
received and the equalizer circuit be 
made up of three taps (N = 1). 
Find the weights 𝑐𝑐−1, 𝑐𝑐0, 𝑐𝑐1 .

𝐼𝐼𝑘𝑘 = �1 for 𝑘𝑘 = 0
0 for 𝑘𝑘 = ±1, ±2, …

0
1
0

=
𝐼𝐼0 𝐼𝐼−1 𝐼𝐼−𝑗
𝐼𝐼1 𝐼𝐼0 𝐼𝐼−1
𝐼𝐼𝑗 𝐼𝐼1 𝐼𝐼0

𝑐𝑐−1
𝑐𝑐0
𝑐𝑐1

=
0.95 −0.15 0.02
0.12 0.95 −0.15

−0.03 0.12 0.95

𝑐𝑐−1
𝑐𝑐0
𝑐𝑐1

⇒
𝑐𝑐−1
𝑐𝑐0
𝑐𝑐1

=
0.163
1.013

−0.123

-4 -3 -2 -1 0 1 2 3 4
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 0.95

-0.15

0.12

Time

Am
pl

itu
de

0.02 -0.03

Zero-forcing equalizer4. Equalization

Then



Zero-forcing equalizer4. Equalization

After application (4.10) we get 𝐼𝐼−1 = 0, 𝐼𝐼0 = 1, 𝐼𝐼1 = 0 as shown in m file 
(𝐼𝐼 = 𝑥𝑥, 𝐼𝐼 = 𝑦𝑦) . Note that (4.10) represents a linear convolution.

x = [0.02   -0.15    0.95    0.12   -0.03];
Ik = [0 1 0]’; % required symbol samples
B = [x(3)  x(2)  x(1); x(4)  x(3)  x(2); x(5)  x(4)  x(3)];
C = linsolve(B, Ik); % solving a linear system of equations
y = conv(C, x); % linear convolution

C =
0.1625
1.0127
-0.1228

y =
0.0032   -0.0041    0.0000    1.0000    0.0000   -0.0451    0.0037

83
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The ZF equalizer removes ISI but it does not take into account noise in the 
system ⇒ it may not give the best error performance.

The minimum mean square error (MMSE) equalizer assume presence of noise. 
Thus, each symbol 𝐼𝐼𝑘𝑘 is modeled as a random variable and the information 
sequence 𝐼𝐼𝑘𝑘 as WSS. We want to minimize the MSE between 𝐼𝐼𝑘𝑘 and 𝐼𝐼𝑘𝑘, i.e.

MSE = E 𝐼𝐼𝑘𝑘 − 𝐼𝐼𝑘𝑘
𝑗

MSE = E 𝐼𝐼𝑘𝑘 − �
𝑗𝑗=−𝑁𝑁

𝑁𝑁

𝐼𝐼𝑘𝑘−𝑗𝑗ℎ𝐸𝐸𝑗𝑗

𝑗

= E 𝐼𝐼𝑘𝑘 − �̃�𝐈𝑘𝑘
𝑇𝑇𝐡𝐡𝐸𝐸

𝑗 ,

Using (4.8) we get

where �̃�𝐈𝑘𝑘 = 𝐼𝐼𝑘𝑘+𝑁𝑁, ⋯ , 𝐼𝐼𝑘𝑘−𝑁𝑁 , 𝐡𝐡𝐸𝐸 = ℎ𝐸𝐸,−𝑁𝑁, ⋯ , ℎ𝐸𝐸,𝑁𝑁

84

(4.12)

(4.13)
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Differentiating with respect to each ℎ𝐸𝐸𝑗𝑗 and setting the result to zero, we get

−2E �̃�𝐈𝑘𝑘 𝐼𝐼𝑘𝑘 − �̃�𝐈𝑘𝑘
𝑇𝑇𝐡𝐡𝐸𝐸 = −2 𝐑𝐑𝐼𝐼𝐼𝐼 − 𝐑𝐑𝐼𝐼𝐼𝐼𝐡𝐡𝐸𝐸 = 0

where 𝐑𝐑𝐼𝐼𝐼𝐼= 𝐸𝐸 �̃�𝐈𝑘𝑘�̃�𝐈𝑘𝑘
𝑇𝑇 and 𝐑𝐑𝐼𝐼𝐼𝐼 = 𝐸𝐸 𝐼𝐼𝑘𝑘�̃�𝐈𝑘𝑘 are the autocorrelation matrix and 

cross-correlation vector, respectively. After simple rearranging, we get

𝐑𝐑𝐼𝐼𝐼𝐼𝐡𝐡𝐸𝐸 = 𝐑𝐑𝐼𝐼𝐼𝐼,

Finally, the filter coefficients are given by

𝐡𝐡𝐸𝐸 = 𝐑𝐑𝐼𝐼𝐼𝐼
−1𝐑𝐑𝐼𝐼𝐼𝐼,

It can be shown that the SNR at the MMSE equalizer output is better than that 
of the zero-forcing equalizer.

(4.15)

(4.14)
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ZF vs. MMSE equalizer4. Equalization

The ZF equalizer enforces a completely flat (constant) transfer function (a) ⇒
strong amplification at frequencies with small transfer ⇒ noise enhancement. 
The noise power of an MMSE equalizer is smaller than that of a ZF equalizer (b).

f

A

f

A

f

A

f

A

f

A
Information Channel Noise Equalizer

Information 
and noise

f

A

f

A

f

A

f

A

f

A
Information Channel Noise Equalizer

Information 
and noise

Noise enhancement

Less noise enhancement than ZF

(a)

(b)



Stochastic LMS 
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Least mean square (LMS) equalizer results from iterative MMSE approach. 
Recall from (4.14) to get the MSE gradient

where 𝑒𝑒𝑘𝑘 = 𝐼𝐼𝑘𝑘 − �̃�𝐈𝑘𝑘
𝑇𝑇𝐡𝐡𝐸𝐸 is an equalization error. The MSE gradient gives the 

direction to change 𝐡𝐡𝐸𝐸 for the largest increase of the MSE. To decrease the MSE 
𝐡𝐡𝐸𝐸 must be updated in the direction opposite to the gradient.

where 𝜇𝜇 is a small positive constant that controls the rate of convergence. Note 
that in the iterative approach each symbol is equalized by using previous filter 
coefficients i.e. 𝑒𝑒𝑘𝑘 = 𝐼𝐼𝑘𝑘 − �̃�𝐈𝑘𝑘

𝑇𝑇𝐡𝐡𝐸𝐸 𝑘𝑘 − 1 .

To simplify the calculation, the instantaneous estimate of the cross-correlation 
𝐑𝐑𝐼𝐼𝑒𝑒 ≈ 𝐼𝐼𝑘𝑘𝑒𝑒𝑘𝑘 may be used. Then

(4.16)

−2E �̃�𝐈𝑘𝑘 𝐼𝐼𝑘𝑘 − �̃�𝐈𝑘𝑘
𝑇𝑇𝐡𝐡𝐸𝐸 = −2E �̃�𝐈𝑘𝑘𝑒𝑒𝑘𝑘 = −2𝐑𝐑𝐼𝐼𝑒𝑒

𝐡𝐡𝐸𝐸 𝑘𝑘 = 𝐡𝐡𝐸𝐸 𝑘𝑘 − 1 + 𝜇𝜇𝐑𝐑𝐼𝐼𝑒𝑒,

𝐡𝐡𝐸𝐸 𝑘𝑘 = 𝐡𝐡𝐸𝐸 𝑘𝑘 − 1 + 𝜇𝜇𝐼𝐼𝑘𝑘𝑒𝑒𝑘𝑘
87



FIR Filter

Weight 
setting

Training 
sequence

𝐼𝐼𝑘𝑘𝐼𝐼𝑘𝑘

𝐼𝐼𝑘𝑘

𝑒𝑒𝑘𝑘

S

Stochastic LMS 
equalizer4. Equalization

LMS equalizer implementation 

Training mode: switch S is on. The 
received training sequence 𝐼𝐼𝑘𝑘 is 
compared with an identical sequence 
𝐼𝐼𝑘𝑘 generated by receiver. The error 
signal 𝑒𝑒𝑘𝑘 is continuously calculated, 
and the filter weights are adjusted.

Data mode: switch S is OFF and the 
equalized signal is fetched from output. 

As 𝐼𝐼𝑘𝑘is unknown at the receiver, the transmitter transmits a training sequence 
that is known a priori by the receiver (it is stored in memory) and can be used 
for 𝑒𝑒𝑘𝑘 estimation. 
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Decision feedback 
(DFE) equalizer4. Equalization
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The DFE determines the ISI contribution from detected symbols 𝐼𝐼𝑘𝑘
𝑑𝑑 by passing 

them through a feedback filter 𝐻𝐻𝐸𝐸,𝐵𝐵 𝑧𝑧 that approximates the channel 𝐺𝐺(𝑧𝑧) 
convolved with the feedforward filter 𝐻𝐻𝐸𝐸,𝐹𝐹 𝑧𝑧 . The resulting ISI is then 
subtracted from the incoming symbols.

𝐼𝐼𝑘𝑘 = �
𝑗𝑗=−𝑁𝑁1

0

𝐼𝐼𝑘𝑘−𝑗𝑗ℎ𝐸𝐸𝑗𝑗 − �
𝑗𝑗=1

𝑁𝑁2

𝐼𝐼𝑘𝑘−𝑗𝑗
𝑑𝑑 ℎ𝐸𝐸𝑗𝑗

Assuming that 𝐻𝐻𝐸𝐸,𝐹𝐹 𝑧𝑧 has N1+1 taps and 𝐻𝐻𝐸𝐸,𝐹𝐹 𝑧𝑧 has N2 taps. We can write the 
DFE output as

Feedback filter
HE,B(z)

Feedforward filter
HE,F(z)

𝐼𝐼𝑘𝑘
Decision

𝐼𝐼𝑘𝑘 𝐼𝐼𝑘𝑘
𝑑𝑑

(4.17)



Decision feedback 
(DFE) equalizer4. Equalization
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It is obvious that  𝐡𝐡𝐸𝐸 = ℎ𝐸𝐸,𝐹𝐹,−𝑁𝑁1 , ⋯ , ℎ𝐸𝐸,𝐹𝐹,0, ℎ𝐸𝐸,𝐵𝐵,1, ⋯ , ℎ𝐸𝐸,𝐵𝐵,𝑁𝑁2 .

Note that in the case of ZF we get zero ISI and in (4.17) 𝐼𝐼𝑘𝑘 is equal to the second 
term ⇒ ZF approach is not suitable for the filter coefficients calculation ⇒ LMS 
algorithm is used bellow. 

Adaptation of the LMS coefficients

where during the training phase  𝑒𝑒𝑘𝑘 = 𝐼𝐼𝑘𝑘 − 𝐼𝐼𝑘𝑘 .

𝐡𝐡𝐸𝐸,𝐹𝐹 𝑘𝑘 = 𝐡𝐡𝐸𝐸,𝐹𝐹 𝑘𝑘 − 1 + 𝜇𝜇𝐼𝐼𝑘𝑘𝑒𝑒𝑘𝑘 and   𝐡𝐡𝐸𝐸,𝐵𝐵 𝑘𝑘 = 𝐡𝐡𝐸𝐸,𝐵𝐵 𝑘𝑘 − 1 + 𝜇𝜇𝐼𝐼𝑘𝑘
𝑑𝑑𝑒𝑒𝑘𝑘,

(4.18)
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The elimination of ISI, and making a decision on the current symbol based on 
the equalizer output is simple and practical, but we have no idea whether such 
approach is optimal in terms of minimizing the average symbol error probability 
⇒

• We will design a receiver which decides the whole transmitted symbol 
sequence simultaneously from the received signal.

• We will be aimed at minimizing the probability of choosing the wrong 
sequence of symbols instead of the average symbol error probability.

• We will employ the ML principle to achieve our goal.

• All compensation for channel distortion is to be done at the receiver referred 
to as the maximum likelihood sequence estimation (MLSE) receiver

We will demonstrate the MLSE technique by derivation of the MLSE receiver for 
a signal set consisting of PAM waveforms.
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HT(f) HC(f)

Channel

Σ
TF CF

Maximum likelihood 
receiver (nonlinear)

Transmitter

n(t)

bn r(t)

Gaussian noise

v(t)

h(t)

𝑏𝑏�𝑛𝑛

The transmitted 𝑣𝑣 𝑡𝑡 and the received 𝑟𝑟 𝑡𝑡 PAM signals are given by (4.1), where

𝑟𝑟 𝑡𝑡 = �
𝑛𝑛=−∞

∞

𝑏𝑏𝑛𝑛ℎ 𝑡𝑡 − 𝑠𝑠𝑇𝑇 + 𝑠𝑠 𝑡𝑡

92

and 𝑠𝑠 𝑡𝑡 is a Gaussian process but not necessarily white. Further, we will make 
the following assumptions: 

• The dispersion (memory), of the channel is limited to a finite time MT.
• The transmitter is turned on at some arbitrary time N1T and off at a later 

time N2T so that (N2 - N1) >> M.
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T

2T 3T 4T

5T t-T

MT

Channel memory

The channel memory causes the 
latest signal energy arrival at the 
time t = N2T +MT.   

Hence, we will observe the received 
signal 𝑟𝑟 𝑡𝑡 on the time interval  
𝑁𝑁1𝑇𝑇 ≤ 𝑡𝑡 ≤ 𝑁𝑁𝑗𝑇𝑇 + 𝑀𝑀𝑇𝑇.

The transmitted sequence is 𝑏𝑏𝑛𝑛 𝑡𝑡 , 
𝑁𝑁1 ≤ 𝑠𝑠 ≤ 𝑁𝑁𝑗.

The receiver produces a decision sequence �𝑏𝑏𝑁𝑁1 , �𝑏𝑏𝑁𝑁1+1, ⋯ , �𝑏𝑏𝑁𝑁2which maximize 
a posteriori probability of a data sequence ⇒ the probability to be evaluated 
is

Pr 𝑏𝑏𝑁𝑁1 , ⋯ , 𝑏𝑏𝑁𝑁2|𝑟𝑟 𝑡𝑡 , where 𝑁𝑁1𝑇𝑇 ≤ 𝑡𝑡 ≤ 𝑁𝑁𝑗𝑇𝑇 + 𝑀𝑀𝑇𝑇



By using Bayes’s rule we have

Maximum likelihood
sequence estimation4. Equalization

Pr 𝑏𝑏𝑁𝑁1 , ⋯ , 𝑏𝑏𝑁𝑁2|𝑟𝑟 𝑡𝑡 = Pr 𝑟𝑟 𝑡𝑡 |𝑏𝑏𝑁𝑁1 , ⋯ , 𝑏𝑏𝑁𝑁2 ×
Pr 𝑏𝑏𝑁𝑁1 , ⋯ , 𝑏𝑏𝑁𝑁2

Pr 𝑟𝑟 𝑡𝑡

Because all the symbols are assumed equiprobable, Pr 𝑏𝑏𝑁𝑁1 , ⋯ , 𝑏𝑏𝑁𝑁2 is 
independent of the data sequence, as is the denominator probability density. 
The maximization of (4.19) is equivalent to maximization of likelihood function

(4.19)

Pr 𝑟𝑟 𝑡𝑡 |𝑏𝑏𝑁𝑁1 , ⋯ , 𝑏𝑏𝑁𝑁2 =
1

2𝜋𝜋𝑁𝑁0
𝑘𝑘/𝑗 exp −

1
2𝑁𝑁0

�
−∞

∞

𝑟𝑟 𝑡𝑡 − �
𝑛𝑛

𝑏𝑏𝑛𝑛ℎ 𝑡𝑡 − 𝑠𝑠𝑇𝑇
𝑗

𝑑𝑑𝑡𝑡

where 𝐾𝐾 = 𝑁𝑁𝑗 − 𝑁𝑁1 . The ML sequence estimate of 𝑏𝑏𝑁𝑁1 , ⋯ , 𝑏𝑏𝑁𝑁2 is that data 
sequence minimizing (4.20).

(4.20)
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Using the bit sequence notation 𝐛𝐛𝑁𝑁 = 𝑏𝑏𝑁𝑁1 , ⋯ , 𝑏𝑏𝑁𝑁2 we can minimize the log-
likelihood function l (𝐛𝐛𝑁𝑁) by

�̂�𝐛𝑁𝑁 = arg min
𝐛𝐛𝑁𝑁

�
−∞

∞

𝑟𝑟 𝑡𝑡 − �
𝑛𝑛=𝑁𝑁1

𝑁𝑁2

𝑏𝑏𝑛𝑛ℎ 𝑡𝑡 − 𝑠𝑠𝑇𝑇

𝑗

𝑑𝑑𝑡𝑡

= arg max
𝐛𝐛𝑁𝑁

2 �
−∞

∞

𝑟𝑟 𝑡𝑡 �
𝑛𝑛=𝑁𝑁1

𝑁𝑁2

𝑏𝑏𝑛𝑛ℎ 𝑡𝑡 − 𝑠𝑠𝑇𝑇 𝑑𝑑𝑡𝑡 − �
−∞

∞

�
𝑛𝑛=𝑁𝑁1

𝑁𝑁2

𝑏𝑏𝑛𝑛ℎ 𝑡𝑡 − 𝑠𝑠𝑇𝑇

𝑗

𝑑𝑑𝑡𝑡
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= arg max
𝐛𝐛𝑁𝑁

2 �
𝑛𝑛=𝑁𝑁1

𝑁𝑁2

𝑏𝑏𝑛𝑛𝑦𝑦𝑛𝑛 − �
𝑛𝑛=𝑁𝑁1

𝑁𝑁2

�
𝑚𝑚=𝑁𝑁1

𝑁𝑁2

𝑏𝑏𝑛𝑛𝑏𝑏𝑚𝑚𝑥𝑥𝑛𝑛−𝑚𝑚

where 𝑦𝑦𝑛𝑛 is the matched filter output. Assuming the above time interval
𝑁𝑁1𝑇𝑇 ≤ 𝑡𝑡 ≤ 𝑁𝑁𝑗𝑇𝑇 + 𝑀𝑀𝑇𝑇 we can write 

(4.21)



𝑦𝑦𝑛𝑛 = �
𝑁𝑁1𝑇𝑇

𝑁𝑁2𝑇𝑇+𝑀𝑀𝑇𝑇

𝑟𝑟 𝑡𝑡 ℎ 𝑡𝑡 − 𝑠𝑠𝑇𝑇 𝑑𝑑𝑡𝑡 = �
𝑘𝑘=𝑁𝑁1

𝑁𝑁2

𝑏𝑏𝑘𝑘𝑥𝑥𝑛𝑛−𝑘𝑘 + 𝜉𝜉𝑛𝑛

Maximum likelihood 
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𝑥𝑥𝑛𝑛−𝑚𝑚 = �
𝑁𝑁1𝑇𝑇

𝑁𝑁2𝑇𝑇+𝑀𝑀𝑇𝑇

ℎ 𝑡𝑡 − 𝑠𝑠𝑇𝑇 ℎ 𝑡𝑡 − 𝑚𝑚𝑇𝑇 𝑑𝑑𝑡𝑡, 𝑁𝑁1 ≤ 𝑠𝑠, 𝑚𝑚 ≤ 𝑁𝑁𝑗

where 𝜉𝜉𝑛𝑛 is the noise at the matched filter output, and

It is obvious that

• The term  𝑥𝑥0 is the energy of the pulse at the matched filter output. 

• The finite channel memory implies that 𝑥𝑥𝑛𝑛−𝑚𝑚 = 0 for  𝑠𝑠 − 𝑚𝑚 > 𝑀𝑀.
• The Gaussian noise variables 𝜉𝜉𝑛𝑛 are generally correlated but can be 

changed to uncorrelated by a whitening filter.

• The processing of 𝑦𝑦𝑛𝑛 requires the knowledge of the channel.
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Viterbi algorithm for the Nyquist channel

Let ℎ 𝑡𝑡 correspond to SRC shaping of a Nyquist pulse. Then 𝐻𝐻 𝑓𝑓 𝑗 is a 
Nyquist spectrum. The complementary SRC shaping will be provided by the 
matched filter at the receiver. From (4.23) we can get

𝑥𝑥𝑘𝑘 = �
−∞

∞

ℎ 𝑡𝑡 ℎ 𝑡𝑡 − 𝑘𝑘𝑇𝑇 𝑑𝑑𝑡𝑡 = �
−∞

∞

𝐻𝐻 𝑓𝑓 𝑗𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑘𝑘𝑇𝑇𝑑𝑑𝑡𝑡

Because 𝐻𝐻 𝑓𝑓 𝑗 is the transform of a Nyquist pulse, in time domain we have 
(see (4.3))

𝑥𝑥𝑘𝑘 = 𝐸𝐸𝑠𝑠𝛿𝛿𝑘𝑘,

where 𝐸𝐸𝑠𝑠 = ∫−∞
∞ ℎ𝑗 𝑡𝑡 is the pulse energy. 



𝑙𝑙 𝐛𝐛𝑛𝑛 = 2 �
𝑘𝑘=𝑁𝑁1

𝑛𝑛

𝑏𝑏𝑘𝑘𝑦𝑦𝑘𝑘 + 𝐸𝐸𝑠𝑠 �
𝑘𝑘=𝑁𝑁1

𝑛𝑛

𝑏𝑏𝑘𝑘
𝑗 = 𝐸𝐸𝑠𝑠 �

𝑘𝑘=𝑁𝑁1

𝑛𝑛

𝑏𝑏𝑘𝑘 −
𝑦𝑦𝑘𝑘

𝐸𝐸𝑠𝑠

𝑗

−
𝑦𝑦𝑘𝑘

𝑗

𝐸𝐸𝑠𝑠
𝑗
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sequence estimation4. Equalization

98

r(t)
h(-t)

Matched filter
nT yn

Viterbi algorithm that minimizes 𝑏𝑏�1 , 𝑏𝑏�𝑗, ⋯

Since 𝑥𝑥𝑘𝑘 is nonzero only for 𝑘𝑘 = 0 the log-likelihood (4.21) becomes

Optimization can by done in symbol-by-symbol manner by choosing the
quantized or sliced signal 𝑏𝑏𝑘𝑘 closest to the scaled received sample ⁄𝑦𝑦𝑘𝑘 𝐸𝐸𝑠𝑠.

𝑙𝑙 𝐛𝐛𝑛𝑛 = 𝑙𝑙 𝐛𝐛𝑛𝑛−1 − 2𝑏𝑏𝑛𝑛𝑦𝑦𝑛𝑛 + 2𝑏𝑏𝑛𝑛 �
𝑘𝑘=𝑛𝑛−𝑀𝑀

𝑛𝑛−1

𝑏𝑏𝑘𝑘𝑥𝑥𝑛𝑛−𝑘𝑘 + 𝑏𝑏𝑛𝑛
𝑗𝑥𝑥0



1. Gitlin, R.D., Hayes, J. F., Weinstein S, B. Data communication principles. 
Plenum press, New York, 1992
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5. Channel coding Introduction

Channel coding can generally be understood as the transformation of a "useful" 
signal performed in order to eliminate errors caused by channel impairments.

The main causes of errors:

1. presence of interfering signals in the transmission channel (various types 
of noise in a channel and in a receiver, industrial interference, etc.)

2. Non-flat channel frequency response (narrow bandwidth)
3. Nonlinear behavior of electronic circuits (nonlinear power stage of the 

transmitter, modulator or demodulator).
4. Imperfect synchronization in the receiver
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5. Channel coding Waveform coding

Waveform coding transforms a waveform set (representing a message) into an 
improved waveform set using orthogonal or biorthogonal codes to provide 
better bit error probability 𝑃𝑃𝑏𝑏.

Orthogonal codes
let 𝑀𝑀 is the sequence length then waveform sets 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 are orthogonal if

𝑧𝑧𝑖𝑖𝑗𝑗 = �
𝑘𝑘=0

𝑀𝑀−1

𝑠𝑠𝑖𝑖 𝑘𝑘𝑇𝑇 𝑠𝑠𝑗𝑗 𝑘𝑘𝑇𝑇 = �1 for 𝑠𝑠 = 𝑗𝑗
0 for 𝑠𝑠 ≠ 𝑠𝑠

where i, j = 1,2,...,M, or using number of digit agreements 𝑁𝑁𝐴𝐴, number of digit 
disagreements 𝑁𝑁𝐷𝐷, and total number of digits 𝑁𝑁𝑇𝑇:

𝑧𝑧𝑖𝑖𝑗𝑗 =
𝑁𝑁𝐴𝐴 − 𝑁𝑁𝐷𝐷

𝑁𝑁𝑇𝑇
= �1 for 𝑠𝑠 = 𝑗𝑗

0 for 𝑠𝑠 ≠ 𝑠𝑠
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5. Channel coding Waveform coding

A one-bit data set can be transformed, using orthogonal codewords of two 
digits each as follows

Data set Orthogonal codeword set

0
1 𝑯𝑯𝟏𝟏 = 0 0

0 1 .

To encode a 2-bit data set, we extend the foregoing set as follows
Data set Orthogonal codeword set

0 0
0 1

1 0
1 1

𝑯𝑯𝑗 =

0 0 0 0
0 1 0 1

0 0 1 1
0 1 1 0

=
𝑯𝑯𝟏𝟏 𝑯𝑯𝟏𝟏

𝑯𝑯𝟏𝟏 𝑯𝑯𝟏𝟏

To encode a 𝑘𝑘-bit data set we can write: 𝑯𝑯𝒌𝒌 =
𝑯𝑯𝒌𝒌−𝟏𝟏 𝑯𝑯𝒌𝒌−𝟏𝟏

𝑯𝑯𝒌𝒌−𝟏𝟏 𝑯𝑯𝒌𝒌−𝟏𝟏

Hadamard 
matrix
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5. Channel coding Waveform coding

For equal-energy orthogonal signals the probability of codeword (symbol) 
error, can be upper bounded as

𝑃𝑃𝑒𝑒 𝑀𝑀 ≤ 𝑀𝑀 − 1 𝑄𝑄
𝐸𝐸𝑠𝑠

𝑁𝑁0

To get bit error probability we can use

𝑃𝑃𝑏𝑏 𝑀𝑀
𝑃𝑃𝑒𝑒 𝑀𝑀

=
𝑀𝑀

2 𝑀𝑀 − 1
=

2𝑘𝑘−1

2𝑘𝑘 − 1

Where 𝑘𝑘 is the number of data bits per codeword.

Orthogonal codes
A biorthogonal signal set of M total signals can be obtained from an orthogonal 
set of M/2 signals by augmenting it with the negative of each signal

𝐵𝐵𝑘𝑘 =
𝐻𝐻𝑘𝑘−1

𝐻𝐻𝑘𝑘−1
and 𝑃𝑃𝑒𝑒 𝑀𝑀 ≤ 𝑀𝑀 − 2 𝑄𝑄 𝐸𝐸𝑠𝑠

𝑁𝑁0
+ 𝑄𝑄 𝑗𝐸𝐸𝑠𝑠

𝑁𝑁0
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5. Channel coding Waveform coding

Waveform-encoded 
transmitter

Waveform-encoded 
coherent receiver
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5. Channel coding
Automatic Repeat 
Request (ARQ)

In case the error control consists of error detection only, the communication 
system needs to provide a means of alerting the transmitter that an error has
been detected and that a retransmission is necessary ⇒ ARQ

6
6

User 1 User 2

1
1

2
2'

2
2

3
3

1
12
2'

2
2

3
34
45
5

7
78
89
96

Tim
e

Tim
e

User 1 User 2
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Half duplex 
ARQ 

Full duplex 
ARQ 



5. Channel coding

• Introduced by Gallager in his PhD thesis in 1960
• Class of linear block codes
• Parity-check matrix contains only a few 1’s
• Suited for implementations that make heavy use of parallelism

𝐻𝐻 =
0 1
1 1

0 1
1 0

0 0
1 0

1 0
0 1

1 0
0 1

0 1
0 0

0 1
1 0

1 1
1 0

Representations for LDPC codes
1. Matrix representation
2. Graphical representation

As for 1: parity check matrix with dimension n × m. The number of 1’s in each 
row and column must satisfy the conditions 𝑤𝑤𝑟𝑟 ≪ 𝑚𝑚 and 𝑤𝑤𝑐𝑐 ≪ 𝑠𝑠.
Example for a (8, 4) code:
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As for 2: Effective graphical representation for LDPC codes is known as a 
Tanner graph. It 
• provides a complete representation of the code,
• helps to describe the decoding algorithm, and
• contains the two types of nodes called variable nodes (v-nodes) and 

check nodes (c-nodes).

5. Channel coding

H =

v1 v2 v3 v4 v5 v6 v7 v8
c1 1 1 1 1
c2 1 1 1 1
c3 1 1 1 1
c4 1 1 1 1
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+ + + +

v1     v2        v3        v4        v5        v6        v7        v8

c1      c2        c3         c4     

LDPC (Low Density 
Parity-check) codes



Types of LDPC codes
• Regular codes: 𝑤𝑤𝑐𝑐 is constant for every column and 𝑤𝑤𝑟𝑟 = 𝑤𝑤𝑐𝑐(𝑠𝑠/𝑚𝑚) is also 

constant for every row, i.e. there is the same number of incoming edges for 
every v-node and also for all the c-nodes.

• Irregular codes: the numbers of 1’s in each row or column aren’t constant.

5. Channel coding

108

Performance and complexity of LDPC codes
• For large block lengths they approach the Shannon limit (e.g. an irregular code

performs 0.04 dB of the Shannon limit at a bit error rate of 10−6 with a block length 
of 107).

• Encoding: it is performed in blocks of size m,  y = mG = m[Ik|P] = [m|mP], 

where I is a unit matrix,                                        ,   and  .

The generator matrix G = [Ik|P] can be obtained from the parity check matrix 
H = [PT|In-k] via Gaussian elimination. The sub-matrix P is generally not sparse. The 
matrix H is created by a random construction, a geometric construction, or by 
means of a Gallager parity matrix, etc.

[ ]kmmm ,...,, 21=m [ ]nyyy ,...,, 21=y

LDPC (Low Density 
Parity-check) codes



5. Channel coding

Parity check matrix random construction
• Each row of the matrix must contain a constant number 𝒘𝒘𝒓𝒓 of 1’s,
• Each column of the matrix must contain a constant number 𝒘𝒘𝒄𝒄 of 1’s 
• The matrix must be sparse,
• Any two rows in the matrix must be linearly independent,
• There must be no cycles in the matrix (see simple loop).

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
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5. Channel coding

Gallager‘s construction of parity check matrix
• It is based on individual submatrices.

• H1 has a constant number 𝑤𝑤𝑟𝑟 of 1’s and 𝑤𝑤𝑐𝑐 = 1. They are distributed as follows:

• There are no two lines having any common element and two columns having 
more than one 1.

• Other submatrices are created from H1 by permutation of the columns.
• Matrix 𝐇𝐇 defines a (𝑤𝑤𝑐𝑐, 𝑤𝑤𝑟𝑟) regular parity check code where 𝑤𝑤𝑐𝑐 = 𝑁𝑁.
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𝐇𝐇 =

𝐻𝐻1
𝐻𝐻𝑗
⋮

𝐻𝐻𝑁𝑁

𝐻𝐻1 =

11 ⋯ 1
𝑤𝑤𝑟𝑟

00 ⋯ 0 ⋯ 00 ⋯ 0

00 ⋯ 0 11 ⋯ 1
𝑤𝑤𝑟𝑟

⋮ ⋱ ⋮
00 ⋯ 0 ⋯ 11 ⋯ 1

𝑤𝑤𝑟𝑟

(5.6)

(5.5)

LDPC (Low Density 
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5. Channel coding

𝐻𝐻1

𝐻𝐻𝑗

𝐻𝐻3

𝐇𝐇
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Example 5.1: regular LDPC code (3, 4).
It can be shown that it contains 13 linearly independent rows. The dimension of 
the code is 20 - 13 = 7, ⇒ we have a (20,7) code with actual rate R = 0.35. 

LDPC (Low Density 
Parity-check) codes



5. Channel coding

Geometrical construction of parity check matrix
• It is based on m-dimensional Euclidean geometry (EG) over Galois field GF(2s)
• The LDPC are of the EG(m, 2s) type, where m = 2 (for the 2-D space) and EG 

contains 2ms points. The code has then the following parameters:
 Code length:  𝑠𝑠 = 2𝑗𝑠𝑠 − 1
 Number of parity bits:  𝑠𝑠 − 𝑘𝑘 = 3𝑠𝑠 − 1
 Number of message bits:   𝑘𝑘 = 2𝑗𝑠𝑠 − 3𝑠𝑠

 Minimum Hamming distance: 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = 2𝑠𝑠

 Sparsity: 𝑘𝑘 = 2𝑠𝑠/𝑠𝑠
• The goal to create a vector v and by a cyclic shift of this vector find the 

square matrix 𝐇𝐇. For this purpose we will use the finite field arithmetics [5.1]
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s n k dmin wr = wc r
2 15 7 5 4 0,267
3 63 37 9 8 0,127
4 255 175 17 16 0,0627
5 1023 781 33 32 0,0313
6 4095 3367 65 64 0,01563

LDPC (Low Density 
Parity-check) codes



Example 5.2  for s = 2: because m = 2, we have EG(2, 22) over GF(22), thus we
use the extended finite element array GF(22·2). 
The GF(24) is generated by the primitive polynomial (irreducible polynomial that 
can be used to generate a finite field) g 𝑥𝑥 = 1 + 𝑥𝑥 + 𝑥𝑥4.
1. We must find vector v, containing wr = wc = 4 ones. The length of the vector 

must be equal to the length of the code (n = 15).
2. We determine the distribution of 1’s in the vector. The positionS of 1’s are

given by 𝛼𝛼14 − 𝜂𝜂𝛼𝛼 , where 𝜂𝜂 ∈ GF 2𝑗 .
Possible representations of polynomial roots 
Power r. Polynomial r. 4-Tuple r. Power r. Polynomial r. 4-Tuple r.

0 0 (0000) 𝛼𝛼7 1 + 𝛼𝛼 + 𝛼𝛼3 (1101)
1 1 (1000) 𝛼𝛼8 1 +𝛼𝛼2 (1010)
𝛼𝛼 𝛼𝛼 (0100) 𝛼𝛼9 𝛼𝛼+ 𝛼𝛼3 (0101)
𝛼𝛼2 𝛼𝛼2 (0010) 𝛼𝛼10 1+ 𝛼𝛼 + 𝛼𝛼2 (1110)
𝛼𝛼3 𝛼𝛼3 (0001) 𝛼𝛼11 𝛼𝛼 + 𝛼𝛼2 + 𝛼𝛼3 (0111)
𝛼𝛼4 1 + 𝛼𝛼 (1100) 𝛼𝛼12 1 + 𝛼𝛼 + 𝛼𝛼2 + 𝛼𝛼3 (1111)
𝛼𝛼5 𝛼𝛼 + 𝛼𝛼2 (0110) 𝛼𝛼13 1 + 𝛼𝛼2 + 𝛼𝛼3 (1011)
𝛼𝛼6 𝛼𝛼2 + 𝛼𝛼3 (0011) 𝛼𝛼14 1 +𝛼𝛼3 (1001)

5. Channel coding
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𝑔𝑔 𝛼𝛼 = 1 + 𝛼𝛼 + 𝛼𝛼4

= 0 ⇒ 𝜶𝜶𝟒𝟒 = 𝟏𝟏 + 𝜶𝜶,
𝛼𝛼𝑗 = 𝛼𝛼 1 + 𝛼𝛼 ⇒
𝜶𝜶𝟓𝟓 = 𝜶𝜶𝟐𝟐 + 𝜶𝜶, ⋯

LDPC (Low Density 
Parity-check) codes



5. Channel coding

The elements of the finite field GF (4) are 0, 1, ⋯ , 𝛽𝛽𝑗𝑠𝑠−𝑗 = 0, 1, 𝛽𝛽, 𝛽𝛽𝑗 , 
where

then  0, 1, 𝛽𝛽, 𝛽𝛽𝑗 = 0, 1, 𝛼𝛼𝑗,𝛼𝛼10 . 
𝛼𝛼14 − 0𝛼𝛼 = 1001 + 0000 = 𝛼𝛼14

𝛼𝛼14 − 1𝛼𝛼 = 1001 + 0100 = 1101 = 𝛼𝛼7

𝛼𝛼14 − 𝛼𝛼𝑗𝛼𝛼 = 1001 + 0011 = 1010 = 𝛼𝛼8

𝛼𝛼14 − 𝛼𝛼10𝛼𝛼 = 1001 + 0111 = 1110 = 𝛼𝛼10

v = (000000011010001)

3. We can now create the parity check matrix H by a cyclic shift of the vector v.
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𝛽𝛽= 𝛼𝛼
22𝑠𝑠−1
2𝑠𝑠−1 = 𝛼𝛼𝑗

𝐻𝐻1 =

0 0 0 0 0 0 0
1 0 0 0 0 0 0
⋮ ⋯
0 0 0 0 0 0 1

1 1 0 1 0 0 0 1
0 1 1 0 1 0 0 0
⋱ ⋯ ⋮
1 0 1 0 0 0 1 0

𝛼𝛼8𝛼𝛼7 𝛼𝛼10 𝛼𝛼14

Element of an extension 
field GF(2s) 

Element of an extension 
field GF(22s) 

(5.7)

LDPC (Low Density 
Parity-check) codes
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LDPC (Low Density 
Parity-check) codes5. Channel coding

Construction of EG-LDPC Generator matrix
Let h be an nonnegative integer less than 22s. Then h can be expressed
in radix-2s form:

ℎ = 𝛿𝛿0 + 𝛿𝛿12𝑠𝑠 + ⋯ + 𝛿𝛿𝑚𝑚−12 𝑚𝑚−1 𝑠𝑠,

where 0 ≤ 𝛿𝛿0, ⋯ , 𝛿𝛿𝑚𝑚−1 < 2𝑠𝑠. The 𝟐𝟐𝒔𝒔-weight of h, denoted 𝑊𝑊𝑗𝑠𝑠 ℎ is given by

𝑊𝑊𝑗𝑠𝑠 ℎ = 𝛿𝛿0 + 𝛿𝛿1 + ⋯ + 𝛿𝛿𝑚𝑚−1.

For an nonnegative integer l, let h(l) be the remainder resulting from
dividing 2lh by 2ms - 1. Then 0 ≤ h(l) < 2ms - 1.

Let gEG(x) be the generator polynomial of the EG-LDPC code and let α be a
primitive element of GF(2ms). Then αh is a root of gEG(x) if and only if

0 < max
0≤𝑙𝑙<𝑗

𝑊𝑊𝑗𝑠𝑠 ℎ 𝑙𝑙 ≤ 𝑚𝑚 − 1 2𝑠𝑠 − 1 .

Then gEG(x) has the following sequence of consecutive powers of α,

𝛼𝛼, 𝛼𝛼𝑗, ⋯ , 𝛼𝛼
𝑗𝑚𝑚𝑠𝑠−1
𝑗𝑠𝑠−1 −1

(5.8)

(5.9)
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5. Channel coding

EG-LDPC Generator matrix is obtained by a cyclic shift of the generator 
polynomial.
The minimum distance of the m-dimensional EG-LDPC, code is lower bounded 
as follows

To derive the generator matrix we need to apply some theorems: 
Theorem 5.1. if the element α is a root of f(x), then for any i > 0, α 2i is also a 
root of f(x). The element α2i is called a conjugate of α. 
Theorem 5.2. The minimal polynomial φ (x) of an element α in GF(2s) divides
𝑥𝑥𝑗𝑠𝑠 + 𝑥𝑥.
Theorem 5.3. If α ≠ 0 is a root of f(x), α−1 is a root of g(x) = xsf(x−1), the 
reciprocal polynomial of f(x). 

𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 ≥
2𝑚𝑚𝑠𝑠 − 1
2𝑠𝑠 − 1

(5.10)

LDPC (Low Density 
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LDPC (Low Density 
Parity-check) codes5. Channel coding
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Example 5.3 for s = 2 and m = 2: by substituting m and s into (5.7), (5.8), and 
(5.9) we get ℎ = 𝛿𝛿0 + 4𝛿𝛿1.
• The condition 0 < max

0≤𝑙𝑙<𝑗
𝑊𝑊𝑗𝑠𝑠 ℎ 𝑙𝑙 ≤ 3 is satisfied for 

ℎ = [1, 2, 3, 4, 6, 8, 9, 12]. 

For example ℎ = 6 is obtained when 𝛿𝛿0 = 2 and 𝛿𝛿1 = 1 (𝛿𝛿0 + 𝛿𝛿1 = 3). The 
primitive elements [roots of gEG(x)] then are: 𝛼𝛼, 𝛼𝛼2, 𝛼𝛼3, 𝛼𝛼4, 𝛼𝛼6, 𝛼𝛼8, 𝛼𝛼9, 𝛼𝛼12.

• We need to express 𝛼𝛼h as a roots of prime polynomials in GF(22·2) supposing 
that 𝛼𝛼 is a root of 𝑝𝑝 𝑥𝑥 = 1 + 𝑥𝑥 + 𝑥𝑥4

Conjugate roots Minimal polynomials
1 0 x
2 1 1 + x
3 𝛼𝛼, 𝛼𝛼2, 𝛼𝛼4, 𝛼𝛼8 1 + x + x4

4 𝛼𝛼3, 𝛼𝛼6, 𝛼𝛼9, 𝛼𝛼12 1 + x + x2 + x3 + x4

5 𝛼𝛼5, 𝛼𝛼10 1 + x + x2

6 𝛼𝛼7, 𝛼𝛼11, 𝛼𝛼13, 𝛼𝛼14 1 + x3 + x4

Minimal polynomials of the Elements in GF(16) generated by 𝒑𝒑 𝒙𝒙 = 𝟏𝟏 + 𝒙𝒙 + 𝒙𝒙𝟒𝟒

reciprocal polynomial: 
x4 (1 + x-1 + x-4) = x4 + x3 + 1
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Hence  x16 + x = (1 + x + x4)(1 + x3 + x4)(1 + x + x2 + x3 + x4 )(1 + x + x2)(1 + x) x
The elements 𝛼𝛼, 𝛼𝛼2, 𝛼𝛼4, 𝛼𝛼8 have the same minimal polynomial 1 + x + x4, and the 
elements 𝛼𝛼3, 𝛼𝛼6, 𝛼𝛼9, 𝛼𝛼12 have the same minimal polynomial 1 + x + x2 + x3 + x4 . 
Thus, the generator polynomial of the EG code of length 15 is:
gEG(x) = (1 + x + x4)(1 + x + x2 + x3 + x4 ) = 1 + x4 + x6 + x7 + x8

The generator matrix is then formed by the k - 1 cyclic shift of the gEG(x) and by a 
rearranging to a systematic form.

118

1 0 0 0 0 0 0 1 0 0 0 1 0 1 1
0 1 0 0 0 0 0 1 1 0 0 1 1 1 0
0 0 1 0 0 0 0 0 1 1 0 0 1 1 1
0 0 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

G =

LDPC (Low Density 
Parity-check) codes
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Hard decision (HD) decoding
Based on the exchange of messages between c-nodes with v-nodes of the 
Tanner graph.

Decoding procedure:
1. v-nodes send their values to the corresponding c-nodes.
2. c-nodes perform parity check.

• Check OK ⇒ c-nodes return to the v-nodes the same value.
• Wrong parity ⇒ c-nodes return to the v-nodes an opposite value.

3. v-nodes update their values according to messages from the c-nodes. 
4. Steps 1 to 3 are repeated.

The low internal complexity of the LDPC decoder allows it to be used for 
high-speed applications. For example, 10 Gbit Ethernet (10GBASE-T), optional 
in Wi-Fi 802.11 standards (specifically 802.11n and 802.11ac), DVB-S2 and 
DVB-T2 standard.

LDPC (Low Density 
Parity-check) codes
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Example 5.4: Let the sequence y = [1 0 0 1 0 1 0 1] be sent and y’= [1 1 0 1 0 1 0 
1] be received. Correct the sequence.

H =

v1 v2 v3 v4 v5 v6 v7 v8
c1 1 1 1 1
c2 1 1 1 1
c3 1 1 1 1
c4 1 1 1 1

1 1 0 1 0 1 0      1

c1

received v2 →1 v4 →1 v5 →0 v8 →1

sent 0 →v2 0 →v4 1 →v5 0 →v8

c2

received v1 →1 v2 →1 v3 →0 v6 →1

sent 0 →v1 0 →v2 1 →v3 0 →v6

c3

received v3 →0 v6 →1 v7 →0 v8 →1

sent 0 →v3 1 →v6 0 →v7 1 →v8

c4

received v1 →1 v4 →1 v5 →0 v7 →0

sent 1 →v1 1 →v4 0 →v5 0 →v7

+ + + +

v1     v2        v3        v4        v5        v6        v7        v8

c1      c2        c3         c4     

1       1           0           0     

LDPC (Low Density 
Parity-check) codes
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v-nodes y Messages from v-nodes New y

v1 1 c2 → 1 c4 → 1 1

v2 1 c1 → 0 c2 → 0 0

v3 0 c2 → 1 c3 → 0 0

v4 1 c1 → 0 c4 → 1 1

v5 0 c1 → 1 c4 → 0 0

v6 1 c2 → 0 c3 → 1 1

v7 0 c3 → 0 c4 → 0 0

v8 1 c1 → 1 c3 → 1 1

Node v2 sends symbol 1 to c1 a c2  and both the nodes return symbol 0, while 
e.g. v4 gets the opposite answer only from one node ⇒ correction of v2.

+ + + +

v1     v2        v3        v4        v5        v6        v7        v8

c1      c2        c3         c4     

LDPC (Low Density 
Parity-check) codes
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Soft decision (SD) decoding
Sum–product algorithm (simplified form): 
• based on a similar principle as the HD algorithm, it does not work with bits 

but with probabilities of 0 or 1 occurrence. 

• the goal is to find a decoded vector d, which is an estimate of the code 
vector c actually transmitted able to satisfy the syndrome condition H⋅ d = 0.

The estimates of the channel information are:

𝑓𝑓𝑗𝑗
1 = 1

1+𝑒𝑒
−

2𝐴𝐴𝑦𝑦𝑗𝑗
𝜎𝜎2

, 𝑓𝑓𝑗𝑗
0 = 1 − 𝑓𝑓𝑗𝑗

1
,

where 𝑦𝑦𝑗𝑗 is the channel output at time instant j , σ is the standard deviation of 
the noise, and bits are transmitted in polar format with amplitudes ± A.

Now, we define coefficients 𝑄𝑄𝑖𝑖𝑗𝑗
0 + 𝑄𝑄𝑖𝑖𝑗𝑗

1 = 1 in simplified version, where

𝑄𝑄𝑖𝑖𝑗𝑗
0 = 𝑓𝑓𝑗𝑗

0 and 𝑄𝑄𝑖𝑖𝑗𝑗
1 = 𝑓𝑓𝑗𝑗

1

(5.11)

(5.12)

LDPC (Low Density 
Parity-check) codes



Calculation of 𝑄𝑄𝑖𝑖𝑗𝑗
𝑗𝑗 (horizontal steps) and 𝑅𝑅𝑖𝑖𝑗𝑗

𝑗𝑗 (vertical steps) are performed 
alternately:

Then we define the difference  𝛿𝛿𝑄𝑄𝑖𝑖𝑗𝑗 = 𝑄𝑄𝑖𝑖𝑗𝑗
0 − 𝑄𝑄𝑖𝑖𝑗𝑗

1 and the quantity  

𝛿𝛿𝑅𝑅𝑖𝑖𝑗𝑗 = �
𝑗𝑗∈𝑁𝑁 𝑖𝑖 \𝑗𝑗

𝛿𝛿𝑄𝑄𝑖𝑖𝑗𝑗

where 𝑁𝑁 𝑠𝑠 represents the set of indexes of all the symbol nodes 𝑑𝑑𝑗𝑗 connected 
to the parity check node 𝑐𝑐𝑖𝑖, whereas 𝑁𝑁 𝑠𝑠 \𝑗𝑗 represents the same set except 𝑑𝑑𝑗𝑗.

R21
x
+++

d1     d2        d3                          dn        

c1      c2                       cm     

…..

.…….…..

Rm2
x

R21
xQ11

x
+++

d1     d2        d3                          dn        

c1      c2                       cm     

…..

.…….…..

Q22
x Q23

x
Q2m

xRm1
x

5. Channel coding

Vertical step Horizontal step 
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(5.13)

LDPC (Low Density 
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Coefficients 𝑅𝑅𝑖𝑖𝑗𝑗
𝑗𝑗 then are: 

𝑅𝑅𝑖𝑖𝑗𝑗
0 = �1

2 1 + 𝛿𝛿𝑅𝑅𝑖𝑖𝑗𝑗 , 𝑅𝑅𝑖𝑖𝑗𝑗
1 = �1

2 1 − 𝛿𝛿𝑅𝑅𝑖𝑖𝑗𝑗 ,

The estimate of the decoded vector requires a posteriori probabilities

𝑄𝑄𝑗𝑗
𝑗𝑗 = 𝛼𝛼𝑗𝑗𝑓𝑓𝑗𝑗

𝑗𝑗 �
𝑖𝑖∈𝑀𝑀 𝑗𝑗

𝑅𝑅𝑖𝑖𝑗𝑗
𝑗𝑗

where 𝑀𝑀 𝑗𝑗 represents the set of indexes of all the parity check nodes 
connected to the symbol node 𝑑𝑑𝑗𝑗 and constant 𝛼𝛼𝑗𝑗 is selected so that 

𝑄𝑄𝑗𝑗
0 + 𝑄𝑄𝑗𝑗

1 = 1.

The estimate of the decoded vector �̂�𝑑𝑗𝑗 can be finally obtained by conditions:

if 𝑄𝑄𝑗𝑗
0 > 𝑄𝑄𝑗𝑗

1 then 𝑑𝑑𝑗𝑗 = 0, else 𝑑𝑑𝑗𝑗 = 1.
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(5.14)

(5.15)

(5.16)

LDPC (Low Density 
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Example 5.5: let the vector 𝑐𝑐 = [1 0 1 0 1 1 1 1 0 0 0 1 0 0 1] was sent through the
channel, A = ±1, 𝜎𝜎 = 0.8. Use the SP algorithm to check the received vector and 
correct errors it if necessary.

1. We calculate 𝑓𝑓𝑗𝑗
0 and 𝑓𝑓𝑗𝑗

1 using (5.11)

Position 𝑗𝑗 Codeword c 𝒇𝒇𝒋𝒋
𝟎𝟎 𝒇𝒇𝒋𝒋

𝟏𝟏 Hard decission d
1 1 0,0399 0,9601 1
2 0 0,9814 0,0185 0
3 1 0,0236 0,9764 1
4 0 0,0589 0,9410 1
5 1 0,0495 0,9504 1
6 1 0,0549 0,9451 1
7 1 0,9653 0,0347 0
8 1 0,0321 0,9680 1
9 0 0,9686 0,0314 0

10 0 0,9653 0,0347 0
11 0 0,9580 0,0419 0
12 1 0,0473 0,9526 1
13 0 0,9046 0,0954 0
14 0 0,9495 0,0505 0
15 1 0,0260 0,9740 1

error

error

LDPC (Low Density 
Parity-check) codes



5. Channel coding

126

2. We assign 𝑄𝑄𝑖𝑖𝑗𝑗
0 = 𝑓𝑓𝑗𝑗

0 and 𝑄𝑄𝑖𝑖𝑗𝑗
1 = 𝑓𝑓𝑗𝑗

1 using (5.12) and perform horizontal step ⇒
𝑅𝑅𝑖𝑖𝑗𝑗

0 and 𝑅𝑅𝑖𝑖𝑗𝑗
1 (5.9) using parity check matrix (5.7). 

3. Finally, we perform vertical step to get coefficients 𝑄𝑄𝑗𝑗
0 and 𝑄𝑄𝑗𝑗

1 using (5.15) 
and apply (5.16). To do it, we need 𝛼𝛼𝑗𝑗 = ⁄1 (𝑓𝑓𝑗𝑗

0∏𝑖𝑖∈𝑀𝑀 𝑗𝑗 𝑅𝑅𝑖𝑖𝑗𝑗
0 + 𝑓𝑓𝑗𝑗

1 ∏𝑖𝑖∈𝑀𝑀 𝑗𝑗 𝑅𝑅𝑖𝑖𝑗𝑗
1 ).

Position c 𝛼𝛼𝑗𝑗 𝑸𝑸𝒋𝒋
𝟎𝟎 𝑸𝑸𝒋𝒋

𝟏𝟏 𝑑𝑑
1 1 73,99 0,0933 0,9067 1
2 0 12,11 0,9996 0,0004 0
3 1 71,82 0,0220 0,9780 1
4 0 78,47 0,8057 0,1943 0
5 1 1,89 0,00001 0,9999 1
6 1 49,34 0,0352 0,9648 1
7 1 123,09 0,2782 0,7218 1
8 1 44,25 0,0341 0,9659 1
9 0 14,59 0,9998 0,0002 0

10 0 79,22 0,9595 0,0405 0
11 0 2,08 0,9999 0,00001 0
12 1 12,82 0,0005 0,9995 1
13 0 72,30 0,9200 0,0799 0
14 0 8,11 0,9988 0,0012 0
15 1 72,42 0,0170 0,9830 1

corrected

corrected

LDPC (Low Density 
Parity-check) codes
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6. Baseband modulation Overview of 
modulations

MODULATION

Passband Baseband

Analog Digital Uncoded Coded
AM (DSB, 
SSB, VSB, 
ISB, QAM)

FM
PM

M-ASK
M-FSK
M-PSK

M-QAM

PAM
PWM
PPM
PFM

PCM
D-PCM

DM
ADM
SDM

128

AM (Amplitude Modulation), DSB (Double Side Band), SSB (Single Side Band), 
VSB (Vestigial Side Band), ISB (Independent Side Band), QAM (Quadrature AM), 
FM (Frequency Modulation), PM (Phase Modulation), M- (M-ary), xSK (x Shift Keying), 
PAM (Pulse Amplitude Modulation), PWM (Pulse Width Modulation), PPM (Pulse Position
modulation), PFM (Pulse Frequency modulation), PCM (Pulse Coded Modulation), D-PCM
(Diferential – PCM), DM (Delta Modulation), ADM (Adaptive DM), SDM (Sigma DM)
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6. Baseband modulation Data signal spectrum

Let us assume a data signal in the form of rectangular pulses 𝑝𝑝 𝑡𝑡 of width 𝑇𝑇𝑏𝑏
acquiring two or more states (amplitudes) 𝑎𝑎𝑛𝑛. Its spectrum is expressed using 
PSD (Power Spectral Density). 
The data signal can be regarded as stationary ergodic random process where 𝑎𝑎𝑛𝑛
is a random variable. Then the PSD is

𝑃𝑃𝑠𝑠 𝑓𝑓 = lim
𝑇𝑇→∞

𝑆𝑆𝑇𝑇 𝑓𝑓 𝑗

𝑇𝑇
where 𝑆𝑆𝑇𝑇 𝑓𝑓 = �

⁄−𝑇𝑇 𝑗

⁄𝑇𝑇 𝑗
𝑠𝑠𝑇𝑇 𝑡𝑡 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡𝑑𝑑𝑡𝑡

and 𝑠𝑠𝑇𝑇 𝑡𝑡 = ∑𝑛𝑛=−𝑁𝑁
𝑁𝑁 𝑎𝑎𝑛𝑛𝑝𝑝 𝑡𝑡 − 𝑠𝑠𝑇𝑇𝑏𝑏 . Then

𝑆𝑆𝑇𝑇 𝑓𝑓 = 𝐹𝐹 𝑠𝑠𝑇𝑇 𝑡𝑡 = �
𝑛𝑛=−𝑁𝑁

𝑁𝑁

𝑎𝑎𝑛𝑛𝐹𝐹 𝑝𝑝 𝑡𝑡 − 𝑠𝑠𝑇𝑇𝑏𝑏 = �
𝑛𝑛=−𝑁𝑁

𝑁𝑁

𝑎𝑎𝑛𝑛𝑃𝑃 𝑓𝑓 𝑒𝑒−𝑗𝑗𝜔𝜔𝑛𝑛𝑇𝑇𝑏𝑏

where the spectral function of a rectangular pulse is

𝑃𝑃 𝑓𝑓 = 𝑇𝑇𝑏𝑏sinc 𝜋𝜋𝑓𝑓𝑇𝑇𝑏𝑏

(6.1)

(6.2)

(6.3)
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By substituting (6.2) into (6.1) we have

6. Baseband modulation Data signal spectrum

𝑃𝑃𝑠𝑠 𝑓𝑓 = lim
𝑇𝑇→∞

1
𝑇𝑇 𝑃𝑃 𝑓𝑓 𝑗 �

𝑛𝑛=−𝑁𝑁

𝑁𝑁
𝑎𝑎𝑛𝑛𝑒𝑒−𝑗𝑗𝜔𝜔𝑛𝑛𝑇𝑇𝑏𝑏

𝑗

= 𝑃𝑃 𝑓𝑓 𝑗 lim
𝑇𝑇→∞

1
𝑇𝑇

�
𝑛𝑛=−𝑁𝑁

𝑁𝑁
�

𝑚𝑚=−𝑁𝑁

𝑁𝑁
𝑎𝑎𝑛𝑛𝑎𝑎𝑚𝑚𝑒𝑒−𝑗𝑗𝜔𝜔 𝑚𝑚−𝑛𝑛 𝑇𝑇𝑏𝑏

By introducing m = n + k,  T = (2N + 1)Tb , and 𝑅𝑅𝑟𝑟 = 𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛+𝑘𝑘

𝑃𝑃𝑝𝑝 𝑓𝑓 =
𝑃𝑃 𝑓𝑓 𝑗

𝑇𝑇𝑏𝑏
lim

𝑁𝑁→∞

1
2𝑁𝑁 + 1 �

𝑛𝑛=−𝑁𝑁

𝑁𝑁
�

𝑟𝑟=−𝑁𝑁−𝑛𝑛

𝑁𝑁−𝑛𝑛
𝑅𝑅𝑟𝑟𝑒𝑒−𝑗𝑗𝜔𝜔𝑟𝑟𝑇𝑇𝑏𝑏 =

𝑃𝑃 𝑓𝑓 𝑗

𝑇𝑇𝑏𝑏
�

𝑟𝑟=−∞

∞

𝑅𝑅𝑟𝑟𝑒𝑒−𝑗𝑗𝜔𝜔𝑟𝑟𝑇𝑇𝑏𝑏

The autocorrelation 𝑅𝑅𝑟𝑟 can be expressed as

𝑅𝑅𝑟𝑟 = 𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛+𝑟𝑟 = �
𝑖𝑖=1

𝐼𝐼

𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛+𝑟𝑟 𝑖𝑖𝑃𝑃 𝑠𝑠

𝑃𝑃 𝑠𝑠 is the probability of 𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛+𝑟𝑟 occurrence.

(6.4)

(6.5)

(6.6)
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If the amplitudes 𝑎𝑎𝑛𝑛 are statistically independent (6.6) become to

where σa and ma are the standard deviation and mean value respectively. Using 
Poisson formula 

�
𝑟𝑟=−∞

∞

𝑒𝑒𝑗𝑗𝑟𝑟𝑗𝑗𝑗𝑓𝑓𝑇𝑇𝑏𝑏 =
1
𝑇𝑇𝑏𝑏

�
𝑛𝑛=−∞

∞

𝛿𝛿 𝑓𝑓 −
𝑠𝑠
𝑇𝑇𝑏𝑏

we can rewrite PSD to

𝑃𝑃𝑝𝑝 𝑓𝑓 =
𝑃𝑃 𝑓𝑓 𝑗

𝑇𝑇𝑏𝑏
𝜎𝜎𝑎𝑎

𝑗 + 𝑚𝑚𝑎𝑎
𝑗 �

𝑟𝑟=−∞

∞

𝑒𝑒𝑗𝑗𝑟𝑟𝜔𝜔𝑇𝑇𝑏𝑏 =
𝑃𝑃 𝑓𝑓 𝑗

𝑇𝑇𝑏𝑏
𝜎𝜎𝑎𝑎

𝑗 +
𝑚𝑚𝑎𝑎

𝑗

𝑇𝑇𝑏𝑏
�

𝑛𝑛=−∞

∞

𝛿𝛿 𝑓𝑓 −
𝑠𝑠
𝑇𝑇𝑏𝑏

Note 1: the sinc function in 𝑃𝑃 𝑓𝑓 is zero at all multiples of  fb = 1/Tb. 

𝑅𝑅𝑟𝑟 = 𝑎𝑎𝑛𝑛
𝑗 𝑟𝑟 = 0

𝑎𝑎𝑛𝑛
𝑗 𝑟𝑟 ≠ 0

= 𝜎𝜎𝑎𝑎
𝑗 + 𝑚𝑚𝑎𝑎

𝑗 𝑟𝑟 = 0
𝑚𝑚𝑎𝑎

𝑗 𝑟𝑟 ≠ 0
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(6.7)

(6.8)
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0 1 2 3 4 5 6 7 8 9 10
0

A

0 1 2 3 4 5 6 7 8 9 10
-A

0

A

0 1 2 3 4 5 6 7 8 9 10
-A

0

A

0 1 2 3 4 5 6 7 8 9 10
-A

0

A

Unipolar NRZ

Bipolar NRZ

AMI NRZ

Manchester

 0         1         1         1         0         1         0         1         0         0
an

an

an

an

Tb

Basic line codes, NRZ (No Return to Zero)

Aims of line codes design: 
• zero DC component ⇒ easy design of electronic circuits, 
• easy synchronization (at least one amplitude change in each bit).
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6. Baseband modulation Line codes

Unipolar NRZ: an = {0, A} for 𝑃𝑃 0 = 𝑃𝑃 𝐴𝐴 we can write. 

𝑅𝑅𝑟𝑟 =

1
2

0 +
1
2

𝐴𝐴𝑗 =
𝐴𝐴𝑗

2
𝑟𝑟 = 0

1
2

0 +
1
2

𝐴𝐴
𝑗

=
𝐴𝐴𝑗

4
𝑟𝑟 ≠ 0.

Using (6.8) the PSD is

𝑃𝑃𝑠𝑠 𝑓𝑓 = 𝑃𝑃 𝑓𝑓 𝑗 𝐴𝐴𝑗

4𝑇𝑇𝑏𝑏
1 +

1
𝑇𝑇𝑏𝑏

�
𝑛𝑛=−∞

∞

𝛿𝛿 𝑓𝑓 −
𝑠𝑠
𝑇𝑇𝑏𝑏

and assuming Note 1

𝑃𝑃𝑠𝑠_𝑈𝑈𝑛𝑛𝑖𝑖 𝑓𝑓 = 𝐴𝐴2𝑇𝑇𝑏𝑏
4

sinc𝑗 𝜋𝜋𝑓𝑓𝑇𝑇𝑏𝑏 + 𝐴𝐴2

4
𝛿𝛿 𝑓𝑓

Transmission of a long sequence of the same bit causes nonzero DC component 
and difficult synchronization.

(6.9)
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Bipolar NRZ: an = {-A, A} for 𝑃𝑃 −𝐴𝐴 = 𝑃𝑃 𝐴𝐴 we can write

PSD: 𝑃𝑃𝑠𝑠_𝐵𝐵𝑖𝑖𝑝𝑝 𝑓𝑓 = 𝐴𝐴𝑗𝑇𝑇𝑏𝑏sinc𝑗 𝜋𝜋𝑓𝑓𝑇𝑇𝑏𝑏

Transmission of a long sequence of the same bit causes nonzero DC component 
and difficult synchronization (similar to Unipolar NRZ).

6. Baseband modulation Line codes

𝑅𝑅𝑟𝑟 =

1
2

−𝐴𝐴𝑗 +
1
2

𝐴𝐴𝑗 = 𝐴𝐴𝑗 𝑟𝑟 = 0

1
2

−𝐴𝐴 +
1
2

𝐴𝐴
𝑗

= 0 𝑟𝑟 ≠ 0.

(6.10)



AMI-NRZ (Alternate Mark Inversion - NRZ) : an = {-A, 0, A}. 

A binary 0 is encoded as zero volts, as in unipolar encoding, whereas a binary 1 
is encoded alternately as a positive voltage or a negative voltage. Thus

𝑃𝑃 −𝐴𝐴 = 𝑃𝑃 𝐴𝐴 =
1
4

, 𝑃𝑃 0 =
1
2

Although the sequence of bits in the message can be independent, the 
amplitudes of the binary 1’s are statistically dependent due to the -A, A 
alternation ⇒ equation (6.7) must not be used. We can use the following 
considerations:

• If 𝑟𝑟 = 0, 𝑅𝑅0 = 𝐴𝐴𝑗 ⁄1
4 + 0𝑗 ⁄1

𝑗 + (−𝐴𝐴)𝑗 ⁄1
4 = ⁄𝐴𝐴𝑗 2. 

• For 𝑟𝑟 = 1, the two consecutive bits (dn , dn+1) can be (0,0), (0,1), (1,0) a (1,1). 
The corresponding products anan+1 then are 0, 0, 0 a –A2 and
𝑅𝑅1 = 3 × 0 ⁄1

4 + (−𝐴𝐴𝑗) ⁄1
4 = ⁄−𝐴𝐴𝑗 4.

6. Baseband modulation Line codes
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• For 𝑟𝑟 > 1, one half of all message sequences (dn , dn+1, …, dn+r) has dn = 0  
⇒ anan+r = 0, one quarter of messages has dn = 1 and dn+r = 0 ⇒ anan+r = 0. 
For the last quarter we have dn = 1 and dn+r = 1 ⇒ anan+r = ±A. 

Line codes

𝑃𝑃s_𝐴𝐴𝑀𝑀𝐼𝐼 𝑓𝑓 = 𝑇𝑇𝑏𝑏
𝑗sinc𝑗 𝜋𝜋𝑓𝑓𝑇𝑇𝑏𝑏

𝐴𝐴𝑗

𝑇𝑇𝑏𝑏
−

1
4

𝑒𝑒𝑗𝑗𝜔𝜔𝑇𝑇𝑏𝑏 +
1
2

−
1
4

𝑒𝑒−𝑗𝑗𝜔𝜔𝑇𝑇𝑏𝑏

= 𝐴𝐴𝑗𝑇𝑇𝑏𝑏sinc𝑗 𝜋𝜋𝑓𝑓𝑇𝑇𝑏𝑏 ⋅ sin𝑗 𝜋𝜋𝑓𝑓𝑇𝑇𝑏𝑏 .
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DC component is always zero, transmission of a long sequence of zeros causes 
difficult synchronization.

PSD:

Manchester (Bi-Φ-L): an = {-A, A}. Bi-phase coding guarantees at least one 
polarity alternation in each bit interval. 𝑃𝑃 −𝐴𝐴 = 𝑃𝑃 𝐴𝐴 , R0 = A2 and Rr = 0.

𝑃𝑃𝑠𝑠_𝑀𝑀𝑎𝑎𝑛𝑛 𝑓𝑓 = 𝐴𝐴𝑗𝑇𝑇𝑏𝑏sinc𝑗 𝑗𝑗𝑓𝑓𝑇𝑇𝑏𝑏
𝑗

⋅ sin𝑗 𝑗𝑗𝑓𝑓𝑇𝑇𝑏𝑏
𝑗

(6.11)

(6.12)

6. Baseband modulation
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6. Baseband modulation

Clock

Data
Out

Clock

Data

Out

t

t

t

Monostable 
circuit

Edge 
detector VCO

Phase 
comp

PLL

Clock Data

In

Clock recovery

LPF

In

Clock

Data

t

t

t

Manchester encoder Manchester decoder

DC component is always zero,
easy synchronization.



Line codes
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6. Baseband modulation
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7. Digital bandpass modulation

Continuous Phase FSK (CPFSK) is a member of CPM (Continuous Phase
Modulation) family where a symbol change does not cause a step change in 
phase.

𝑠𝑠𝐶𝐶𝐶𝐶𝑀𝑀 𝑡𝑡 = �
𝑛𝑛=−∞

∞
𝐴𝐴𝑐𝑐cos 𝜔𝜔𝑐𝑐𝑡𝑡 + 𝜙𝜙𝑛𝑛 𝑡𝑡 𝑝𝑝 𝑡𝑡 − 𝑠𝑠𝑇𝑇𝑠𝑠 ,

ϕn(t) is the phase change (trajectory), p(t) is the pulse shape function, Ts is the 
symbol period. The symbol frequency 𝜔𝜔𝑛𝑛 = 𝜔𝜔𝑐𝑐 + 𝛥𝛥𝜔𝜔𝑛𝑛 is constant because 

𝛥𝛥𝜔𝜔𝑛𝑛 = 2𝜋𝜋𝑎𝑎𝑛𝑛𝛥𝛥𝑓𝑓

where for M-ary CPFSK 𝑎𝑎𝑛𝑛 = ±1, ±3, ⋯ , ± 𝑀𝑀 − 1
Relative phase change in the interval  𝑠𝑠𝑇𝑇𝑠𝑠 ≤ 𝑡𝑡 < 𝑠𝑠 + 1 𝑇𝑇𝑠𝑠 is

𝛥𝛥𝜙𝜙𝑛𝑛 𝑡𝑡 = �
0

𝑡𝑡
𝛥𝛥𝜔𝜔𝑛𝑛𝑑𝑑𝛼𝛼 = 2𝜋𝜋𝑎𝑎𝑛𝑛𝛥𝛥𝑓𝑓𝑡𝑡

(7.1)

(7.2)

Continuous Phase FSK
(Frequency Shift Keying)
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a-2        a-1       a0       a1       a2        a3        a4       a5       a6       a7           a8

-Ts                                2Ts                4Ts               6Ts                         8Ts         t

E.g.: n = 2,  2Ts < t ≤ 3Ts 

7. Digital bandpass modulation

For 𝑡𝑡 = 𝑇𝑇𝑠𝑠 we have 𝛥𝛥𝜙𝜙𝑛𝑛 𝑇𝑇𝑠𝑠 = 2𝜋𝜋𝑎𝑎𝑛𝑛𝛥𝛥𝑓𝑓𝑇𝑇𝑠𝑠 = 𝜋𝜋𝑎𝑎𝑛𝑛𝛽𝛽, where 𝛽𝛽 = 2𝛥𝛥𝑓𝑓𝑇𝑇𝑠𝑠 is the
modulation index.

Symbol interval definition

The instantaneous absolute phase during the n-th symbol transmission

𝜙𝜙𝑛𝑛 𝑡𝑡 = �
𝑖𝑖=0

𝑛𝑛−1
Δ𝜙𝜙𝑖𝑖 𝑇𝑇𝑠𝑠 + Δ𝜙𝜙𝑛𝑛 𝑡𝑡 − 𝑇𝑇𝑠𝑠 = Φ𝑛𝑛 +

𝜋𝜋
𝑇𝑇𝑠𝑠

𝛽𝛽𝑎𝑎𝑛𝑛𝑡𝑡

where Φ𝑛𝑛 = 𝜋𝜋𝛽𝛽 ∑𝑖𝑖=0
𝑛𝑛−1 𝑎𝑎𝑖𝑖 − 𝑠𝑠𝑎𝑎𝑛𝑛

(7.3)

Continuous Phase FSK
(Frequency Shift Keying)
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ϕCPFSKϕMSK

t

di

3TbTb 5Tb

7. Digital bandpass modulation

Example 7.1: let M = 2, then 𝑎𝑎𝑛𝑛 = 1, −1 , bit period Tb = Ts, 𝛥𝛥𝜙𝜙𝑛𝑛 𝑇𝑇𝑠𝑠 = ±𝜋𝜋𝛽𝛽. 
For an input bit sequence 𝑑𝑑𝑛𝑛 we have 𝑎𝑎𝑛𝑛 = 1 for 𝑑𝑑𝑛𝑛 = 1 and 𝑎𝑎𝑛𝑛 = −1 for 
𝑑𝑑𝑛𝑛 = 0. 

Trellis diagram for
CPFSK and MSK
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Continuous Phase FSK
(Frequency Shift Keying)



7. Digital bandpass modulation

Bit error probability of CPFSK modulation for coherent demodulation

𝑃𝑃𝑏𝑏 = 1
𝑗

erfc 1−𝛾𝛾 𝐴𝐴𝑐𝑐
2𝑇𝑇𝑏𝑏

4𝑁𝑁0
= 1

𝑗
erfc 1−𝛾𝛾 𝐸𝐸𝑏𝑏

𝑗𝑁𝑁0
, 

Where correlation coefficient 𝛾𝛾 = 𝑗
𝑇𝑇𝑏𝑏

∫0
𝑇𝑇𝑏𝑏 cos 𝜔𝜔𝑐𝑐 − 𝛥𝛥𝜔𝜔 cos 𝜔𝜔𝑐𝑐 + 𝛥𝛥𝜔𝜔 𝑑𝑑𝑡𝑡 =

sinc 2𝛥𝛥𝜔𝜔𝑇𝑇𝑏𝑏 + sinc 𝜔𝜔𝑐𝑐𝑇𝑇𝑏𝑏 𝑐𝑐𝑐𝑐𝑠𝑠 𝜔𝜔𝑐𝑐𝑇𝑇𝑏𝑏 . 

For 𝜔𝜔𝑐𝑐𝑇𝑇𝑏𝑏 = 𝑘𝑘𝜋𝜋 where 𝑘𝑘 = 1,2, ⋯ or  𝜔𝜔𝑐𝑐𝑇𝑇𝑏𝑏 << 1 we have

𝛾𝛾 = sinc 2𝛥𝛥𝜔𝜔𝑇𝑇𝑏𝑏 .

Minimal value of (7.4) can be obtained for 2𝛥𝛥𝜔𝜔𝑇𝑇𝑏𝑏 ≈ ⁄3𝜋𝜋 2. Then

𝑃𝑃𝑏𝑏 =
1
2

erfc
1.21𝐸𝐸𝑏𝑏

2𝑁𝑁0

(7.4)
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(7.5)

Continuous Phase FSK
(Frequency Shift Keying)



7. Digital bandpass modulation Continuous Phase FSK
(Frequency Shift Keying)

𝑃𝑃𝑠𝑠 𝑓𝑓 =
𝐴𝐴𝑐𝑐

𝑗𝑇𝑇𝑏𝑏

4
⋅

𝛥𝛥𝜔𝜔𝑇𝑇𝑏𝑏
𝑗 sinc𝑗 𝛾𝛾1 𝑓𝑓 sinc𝑗 𝛾𝛾𝑗 𝑓𝑓

1 + cos𝑗 𝛥𝛥𝜔𝜔𝑇𝑇𝑏𝑏 − 2 cos 𝛥𝛥𝜔𝜔𝑇𝑇𝑏𝑏 cos 2𝜋𝜋𝑓𝑓 − 𝜔𝜔𝑐𝑐 𝑇𝑇𝑏𝑏

 

-80

-70

-60

-50

-40

-30

-20

-10

0

10

-3 -2 -1 0 1 2 3

β = 0.5 β = 0.7

where 𝛾𝛾1 𝑓𝑓 = 2𝜋𝜋𝑓𝑓 − 𝜔𝜔𝑐𝑐 + 𝛥𝛥𝜔𝜔 𝑇𝑇𝑏𝑏
𝑗

𝛾𝛾𝑗 𝑓𝑓 = 2𝜋𝜋𝑓𝑓 − 𝜔𝜔𝑐𝑐 − 𝛥𝛥𝜔𝜔 𝑇𝑇𝑏𝑏
𝑗

PSD of CPFSK 
in log scale
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PSD:



7. Digital bandpass modulation
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For MSK (M = 2) the signals are orthogonal ⇒ γ = 0. From (7.5) we get 
2𝛥𝛥𝜔𝜔𝑇𝑇𝑏𝑏 = 𝑘𝑘𝜋𝜋 or 𝛥𝛥𝜔𝜔 = 𝑘𝑘 ⁄𝜔𝜔𝑏𝑏 4 , 𝑘𝑘 = 1,2, ⋯ . Assuming 𝑘𝑘 = 1 we have

𝛥𝛥𝜔𝜔 = ⁄𝜔𝜔𝑏𝑏 4 = ⁄𝜋𝜋 2𝑇𝑇𝑏𝑏 or 𝛥𝛥𝑓𝑓 = ⁄𝑓𝑓𝑏𝑏 4 = ⁄1 4𝑇𝑇𝑏𝑏

To meet the orthogonality condition, the signaling frequencies 𝑓𝑓1 = 𝑓𝑓𝑐𝑐 − 𝛥𝛥𝑓𝑓
and 𝑓𝑓𝑗 = 𝑓𝑓𝑐𝑐 + 𝛥𝛥𝑓𝑓 must be

𝑓𝑓1 = 𝑘𝑘 𝑓𝑓𝑏𝑏
𝑗

and 𝑓𝑓𝑗 = 𝑘𝑘 + 1 𝑓𝑓𝑏𝑏
𝑗

, 𝑘𝑘 ∈ 𝑍𝑍.

Then 𝛽𝛽 = 2𝛥𝛥𝑓𝑓𝑇𝑇𝑏𝑏 = 𝑓𝑓1 − 𝑓𝑓𝑗 𝑇𝑇𝑏𝑏 = 0.5

Assuming (7.1), (7.3), and 𝛽𝛽 = 0.5 for 𝑠𝑠𝑇𝑇𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑠𝑠 + 1 𝑇𝑇𝑠𝑠 we get

𝑠𝑠𝑛𝑛𝑀𝑀𝑛𝑛𝐾𝐾 𝑡𝑡 = 𝐴𝐴𝑐𝑐 cos 𝜔𝜔𝑐𝑐𝑡𝑡 + Φ𝑛𝑛 + 𝑎𝑎𝑛𝑛
𝑗𝑗

𝑗𝑇𝑇𝑏𝑏
𝑡𝑡 ,

where 𝑎𝑎𝑛𝑛 = 1, −1

(7.6)

(7.7)

(7.8)

MSK
(Minimum Shift Keying)



To maintain continuous phase at bit transition 𝑡𝑡 = 𝑘𝑘𝑇𝑇𝑏𝑏 the condition

𝑎𝑎𝑛𝑛−1
𝜋𝜋
2

𝑠𝑠 + Φ𝑛𝑛−1 = 𝑎𝑎𝑛𝑛
𝜋𝜋
2

𝑠𝑠 + Φ𝑛𝑛 mod 2𝜋𝜋

has to be met. This is

𝛷𝛷𝑛𝑛 = � 𝛷𝛷𝑛𝑛−1 mod 2𝜋𝜋 , 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1
𝛷𝛷𝑛𝑛−1 ± 𝑠𝑠𝜋𝜋 mod 2𝜋𝜋 , 𝑎𝑎𝑛𝑛 ≠ 𝑎𝑎𝑛𝑛−1

For Φ𝑛𝑛 = 0 or ±π using cos 𝛼𝛼 + 𝛽𝛽 = cos 𝛼𝛼 cos 𝛽𝛽 − sin 𝛼𝛼 sin 𝛽𝛽
(7.8) become to

𝑠𝑠𝑛𝑛𝑀𝑀𝑛𝑛𝐾𝐾 𝑡𝑡 = 𝐴𝐴𝑐𝑐𝑠𝑠𝐼𝐼 𝑡𝑡 cos 𝜔𝜔𝑐𝑐𝑡𝑡 − 𝐴𝐴𝑐𝑐𝑠𝑠𝑄𝑄 𝑡𝑡 sin 𝜔𝜔𝑐𝑐𝑡𝑡 ,
where

𝑠𝑠𝐼𝐼 𝑡𝑡 = cos 𝛷𝛷𝑛𝑛 cos 𝑎𝑎𝑛𝑛
𝜋𝜋𝑡𝑡

2𝑇𝑇𝑏𝑏
= cos 𝛷𝛷𝑛𝑛 cos

𝜋𝜋𝑡𝑡
2𝑇𝑇𝑏𝑏

𝑠𝑠𝑄𝑄 𝑡𝑡 = cos 𝛷𝛷𝑛𝑛 sin 𝑎𝑎𝑛𝑛
𝜋𝜋𝑡𝑡

2𝑇𝑇𝑏𝑏
= 𝑎𝑎𝑛𝑛 cos 𝛷𝛷𝑛𝑛 sin

𝜋𝜋𝑡𝑡
2𝑇𝑇𝑏𝑏

7. Digital bandpass modulation

(7.9)

(7.10)
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MSK
(Minimum Shift Keying)



7. Digital bandpass modulation

Conclusion:
• 𝑠𝑠𝐼𝐼 𝑡𝑡 can change only if n is even [cos 𝛷𝛷𝑛𝑛 = ±1] in 𝑡𝑡 = 2𝑠𝑠 + 1 𝑇𝑇𝑏𝑏 when 

cos ⁄𝜋𝜋𝑡𝑡 2𝑇𝑇𝑏𝑏 goes through zero.

• 𝑠𝑠𝑄𝑄 𝑡𝑡 can change only if n is odd [𝑎𝑎𝑛𝑛cos 𝛷𝛷𝑛𝑛 = ±1] in 𝑡𝑡 = 2𝑠𝑠𝑇𝑇𝑏𝑏 when 
sin ⁄𝜋𝜋𝑡𝑡 2𝑇𝑇𝑏𝑏 goes through zero.

• Both the signals can change always after the interval 2𝑇𝑇𝑏𝑏. In I branch, the 
moments of change relative to Q branch are shifted by the 𝑇𝑇𝑏𝑏.

n –1 0 1 2 3 4 5 6 7 8
an–1 –1 –1 –1 1 1 –1 1 –1 1 1
an –1 –1 1 1 –1 1 –1 1 1 –1
Φn–1 0 0 π π 0 0 π π π
Φn 0 0 π π 0 0 π π π π
cos Φn 1 1 –1 –1 1 1 –1 –1 –1 –1
an cos Φn –1 –1 –1 –1 –1 1 1 –1 –1 1
frequency f0 f1 f0 f1 f1 f1 f1 f0 f1
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Example 7.2: 
dn = 0 0 1 1 0 1 0 1 1 0
Calculate the coefficients
cos 𝛷𝛷𝑛𝑛 and 𝑎𝑎𝑛𝑛 cos 𝛷𝛷𝑛𝑛

Changes 
for odd n

Changes 
for even n

MSK
(Minimum Shift Keying)
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                               2Tb                             4Tb                              6Tb                               8Tb                                  t

I(t)

sI(t)

cos(πt/2Tb)

sI(t)cos(πt/2Tb)

 t

t

t

    a-1           a-1 

    a1                a1 

    a3              a3      a5              a5  

    a7                a7  
                               2Tb                             4Tb                              6Tb                               8Tb                                  t

d(t)
    d-1            d0 

    d1                d2 
    d5             

     d7             d8  
    d3                

    d4                    d6                

7. Digital bandpass modulation

𝑓𝑓 =
𝑓𝑓0 = 𝑓𝑓𝑐𝑐 −

1
4𝑇𝑇𝑏𝑏

for 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1,

𝑓𝑓1 = 𝑓𝑓𝑐𝑐 +
1

4𝑇𝑇𝑏𝑏
for 𝑎𝑎𝑛𝑛 ≠ 𝑎𝑎𝑛𝑛−1.

MSK signal 
generation

Q(t)

sQ(t)

sin(πt/2Tb)

              Tb                               3Tb                             5Tb                              7Tb                            9Tb                t

sQ(t)sin(πt/2Tb)

sMSK(t)

t

t

    a0             a0 

    a2             a2     a4            a4       a6           a6 

    a8                a8 

t

t

 n       0         1          2         3         4          5          6         7          8 
  an-1, an   -1,-1      -1,1      1,1      1,-1     -1,1      1,-1     -1,1      1,1      1,-1 

MSK
(Minimum Shift Keying)
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MSK modulator

an

an-1

S/P: serial to parallel converter
BPF: bandpass filter

MSK
(Minimum Shift Keying)



7. Digital bandpass modulation MSK
(Minimum Shift Keying)
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MSK demodulator

P/S: parallel to serial converter
LPF: lowpass filter



7. Digital bandpass modulation FFSK (Fast Frequency 
Shift Keying)
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FFSK modulation: a modification of MSK, but it unambiguously assigns 
particular frequencies to the bit values of the input sequence d(t).
By appliyng a differential coder where

𝑏𝑏𝑛𝑛 = 𝑏𝑏𝑛𝑛−1 ⊕ 𝑑𝑑𝑛𝑛,

each bit 𝑑𝑑𝑛𝑛 = 1 would be modulated by frequency 𝑓𝑓1 and each bit 𝑑𝑑𝑛𝑛 = 0 by 
frequency 𝑓𝑓0.

Example 7.3: 
dn = 0 0 1 1 0 1 0 1 1 0
Calculate the coefficients
𝑎𝑎𝑛𝑛 and 𝑎𝑎𝑛𝑛−1.

n –1 0 1 2 3 4 5 6 7 8
dn 0 0 1 1 0 1 0 1 1 0
bn–1 – 0 0 1 0 0 1 1 0 1
bn = bn–1⊕ dn 0 0 1 0 0 1 1 0 1 1
an –1 –1 1 –1 –1 1 1 –1 1 1
an–1 – –1 –1 1 –1 –1 1 1 –1 1
frequency – f0 f1 f1 f0 f1 f0 f1 f1 f0

𝑓𝑓0 ≡ 𝑑𝑑𝑛𝑛 = 0



7. Digital bandpass modulation GMSK 
(Gaussian MSK)

GMSK: applies symbol filtering using GLPF (Gaussian Low-Pass) before MSK 
modulation.

𝑔𝑔 𝑡𝑡 =
𝐾𝐾
2𝜋𝜋

exp −
𝐾𝐾𝑗𝑡𝑡𝑗

2
where 𝐾𝐾 =

2𝜋𝜋𝐵𝐵𝑇𝑇

ln 2

where BT is 3 dB bandwidth
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GLPF impulse response Trellis diagram of GMSK



7. Digital bandpass modulation GMSK 
(Gaussian MSK)

 

 A  

RBW  10  kHz
VBW  30  kHz
SWT  20  msAtt  15  dBRef -10  dBm

Center 100  MHz Span 500  kHz50  kHz/

1  PK

VIEW

 

2  PK

MAXH

3DB

3  PK

VIEW

-110
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-70

-60

-50

-40

-30
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-10

MSK 

GMSK 
BTTb =  0.6

GMSK 
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Measured power spectrum of MSK and GMSK
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7. Digital bandpass modulation MQAM (M-ary Quadrature
Amplitude Modulation)

153

MQAM: change of amplitude 𝐴𝐴𝑛𝑛 and phase 𝜙𝜙𝑛𝑛 depending on 𝑠𝑠-tuple signal bits

𝑠𝑠𝑀𝑀𝑄𝑄𝐴𝐴𝑀𝑀 𝑡𝑡 = �
𝑛𝑛=−∞

∞
𝐴𝐴𝑛𝑛cos 𝜔𝜔𝑐𝑐𝑡𝑡 + 𝜙𝜙𝑛𝑛 𝑡𝑡 − 𝑠𝑠𝑇𝑇𝑠𝑠

For the time interval 𝑠𝑠𝑇𝑇𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑠𝑠 + 1 𝑇𝑇𝑠𝑠 we can write

𝑠𝑠𝑀𝑀𝑄𝑄𝐴𝐴𝑀𝑀 𝑡𝑡 = 𝐴𝐴𝑛𝑛 cos 𝜙𝜙𝑛𝑛
𝐼𝐼𝑛𝑛

cos 𝜔𝜔𝑐𝑐 𝑡𝑡 − 𝐴𝐴𝑛𝑛 sin 𝜙𝜙𝑛𝑛
𝑄𝑄𝑛𝑛

sin 𝜔𝜔𝑐𝑐 𝑡𝑡

16 QAM 
modulator
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7. Digital bandpass modulation MQAM (M-ary Quadrature
Amplitude Modulation)

16 QAM demodulator

MQAM PSD:

𝑃𝑃𝐼𝐼𝑄𝑄_𝑄𝑄𝐴𝐴𝑀𝑀 𝑓𝑓 = 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎
𝑗 𝑇𝑇𝑠𝑠sinc𝑗 𝜋𝜋𝑓𝑓𝑇𝑇𝑠𝑠 = 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎

𝑗 𝑠𝑠𝑇𝑇𝑏𝑏sinc𝑗 𝜋𝜋𝑓𝑓𝑠𝑠𝑇𝑇𝑏𝑏 ,

where 𝐴𝐴𝑎𝑎𝑣𝑣𝑎𝑎 is an average symbol amplitude.
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7. Digital bandpass modulation MQAM (M-ary Quadrature
Amplitude Modulation)

16 QAM signals 
red: no LPF filter 
black: SRC filter
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7. Digital bandpass modulation MQAM (M-ary Quadrature
Amplitude Modulation)



7. Digital bandpass modulation

MQAM error probability

𝑃𝑃𝑏𝑏 =
2

log𝑗 𝑀𝑀 1 −
1
𝑀𝑀

erfc
3
2

log𝑗 𝑀𝑀
𝑀𝑀 − 1

𝐸𝐸𝑏𝑏
𝑁𝑁0

For M = 16 we get

𝑃𝑃𝑏𝑏 =
3
8

erfc
2
5

𝐸𝐸𝑏𝑏
𝑁𝑁0

MPSK error probability

𝑃𝑃𝑏𝑏 =
1

log𝑗 𝑀𝑀 erfc sin
𝜋𝜋
𝑀𝑀 log𝑗 𝑀𝑀

𝐸𝐸𝑏𝑏
𝑁𝑁0

If M = 8 then

𝑃𝑃𝑏𝑏 =
1
3 erfc sin

𝜋𝜋
8 3

𝐸𝐸𝑏𝑏
𝑁𝑁0

Comparison of
modulations

157



QPSK error probability

𝑃𝑃𝑏𝑏 =
1
2

erfc
𝐴𝐴𝑐𝑐

𝑗𝑇𝑇𝑏𝑏
2𝑁𝑁0

=
1
2

erfc
𝐸𝐸𝑏𝑏
𝑁𝑁0
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7. Digital bandpass modulation Comparison of
modulations
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Bit error 
probability for 
AWGN channel



8. Multicarrier Modulation Introduction

• A transmitted bitstream is subdivided into many different substreams, which 
are send over different subchannels. 

• The data rate and bandwidth on each of the subchannels is much less than the 
total data rate and the total bandwidth of the system.

• The number of substreams is chosen to ensure that bandwidth of each 
subchannel is less than the coherence bandwidth of the channel ⇒ flat fading.

• Due to long symbol duration, the ISI on each subchannel is small. It can be 
completely suppressed using a cyclic prefix.

Typical implementation: Ortogonal frequency division multiplexing (OFDM), 
Discrete multitone (DMT),

MM application: Digital Audio Broadcasting (DAB), Digital Video Broadcasting 
(DVB), Wireless LANs (802.11a, g), Digital subscriber lines (DSL). 
The orthogonality of the subchannels can be impaired by frequency offset and 
timing jitter.
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Orthogonal frequency 
division multiplexing 

Let B be a baseband bandwidth, R be a desired data rate and N be a number of 
subchannels. 
The coherence bandwidth and the subchannel bandwidth are assumed to be 
𝐵𝐵𝑐𝑐 ≥ 𝐵𝐵 and 𝐵𝐵𝑁𝑁 = ⁄𝐵𝐵 𝑁𝑁 ≪ 𝐵𝐵𝑐𝑐 respectively. 

Nonovelapping channels
For nonoverlapping channels we set 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑐𝑐 + 𝑠𝑠2𝐵𝐵𝑁𝑁, 𝑠𝑠 =0,1, ⋯ , 𝑁𝑁 − 10. The 
transmitted signal over one symbol time 𝑇𝑇𝑁𝑁 is

𝑠𝑠 𝑡𝑡 = Re �
𝑛𝑛=0

𝑁𝑁−1

𝑠𝑠𝑛𝑛𝑝𝑝 𝑡𝑡 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑛𝑛𝑡𝑡

where 𝑠𝑠𝑛𝑛 is the complex symbol associated with the 𝑠𝑠-th subcarrier. If 𝑝𝑝 𝑡𝑡 is a 
raised-cosine pulse, we get 𝑇𝑇𝑁𝑁 = ⁄1 + 𝛽𝛽 2𝐵𝐵𝑁𝑁 and If 𝑝𝑝 𝑡𝑡 is a rectangular pulse 
𝑇𝑇𝑁𝑁 = ⁄1 2𝐵𝐵𝑁𝑁. 
A total passband bandwidth: 𝑁𝑁2𝐵𝐵𝑁𝑁 = 2𝐵𝐵.
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Orthogonal frequency 
division multiplexing 
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Advantage: small frequency offsets and timing jitter have insignificant impact on
the orthogonality of the subchannels.

Multicarrier transmitter

Data 
input

QPSK/QAM
modulator

QPSK/QAM
modulator

QPSK/QAM
modulator

R/N

R

Serial to parallel converter

R/N

R/N

p (t )

p (t )

p (t )

s0

s1

sN -1

s0(t )

s1(t )

sN -1(t )

cos(2πf0t) 

cos(2πf1t) 

cos(2πfN -1t) 

s (t )

8. Multicarrier Modulation
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Multicarrier receiver

Nonovelapping channels

QPSK/QAM
demodulator

QPSK/QAM
demodulator

QPSK/QAM
demodulator

cos(2πf0t) 

cos(2πf1t) 

cos(2πfN -1t) 

s0(t )+n0(t )

s1(t )+n1(t )

sN -1(t )+nN -1(t )

Parallel to serial converter

R/N

R/N

R/N

Data 
output

R

f0

f1

fN-1

s(t )+n(t )

f1 f2 fN -1f0=fc

8. Multicarrier Modulation



Orthogonal frequency 
division multiplexing 
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Ovelapping channels
The baseband subcarriers cos 2𝜋𝜋𝑠𝑠𝑇𝑇𝑁𝑁 , 𝑠𝑠 = 0,1, ⋯ form a set of orthonormal 
basis functions on the interval 0, 𝑇𝑇𝑛𝑛 . 
There is no set of subcarriers with a smaller frequency separation that form an 
orthonormal set on 0, 𝑇𝑇𝑛𝑛 ⇒ minimum frequency separation ∆𝑓𝑓 = ⁄1 𝑇𝑇𝑁𝑁 .
If we use raised cosine pulses with 𝛽𝛽 = 1, we will have 𝑇𝑇𝑁𝑁 = ⁄1 𝐵𝐵𝑁𝑁 and
∆𝑓𝑓 = 𝐵𝐵𝑁𝑁 ⇒ passband subchannels will overlap

⇒ a different receiver structure is needed. 

f1 f2 fN -1f0=fc

BN 

8. Multicarrier Modulation
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division multiplexing 

164

cos(2πf0t) 

cos(2πf1t) 

cos(2πfN -1t) 

s0(t )

s1(t )

sN -1(t )

s(t )+n(t )

Symbol 
demapper

Symbol 
demapper

Symbol 
demapper

Parallel to serial converter

R/N

R/N

R/N

Data 
output

R

Multicarrier receiver (in phase branch) for overlapping subcarriers

�̂�𝑠𝑖𝑖 =
1

𝑇𝑇𝑁𝑁
�

0

𝑇𝑇𝑁𝑁
�
𝑗𝑗=0

𝑁𝑁−1

𝑠𝑠𝑗𝑗 cos 2𝜋𝜋𝑓𝑓𝑗𝑗𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑖𝑖𝑡𝑡 𝑑𝑑𝑡𝑡

8. Multicarrier Modulation



Orthogonal frequency 
division multiplexing 

For simplicity, let pulse shapes will be rectangular and in-phase signaling only be 
used, so that 𝑠𝑠𝑗𝑗 be real and modulated with a cosine carrier. 

Identical structure using sine carriers would be used to demodulated the 
quadrature signal component. The passband subcarriers are 𝑓𝑓𝑗𝑗 = 𝑓𝑓𝑐𝑐 + 𝑗𝑗/𝑇𝑇𝑁𝑁

�̂�𝑠𝑖𝑖 =
1

𝑇𝑇𝑁𝑁
�

0

𝑇𝑇𝑁𝑁
�
𝑗𝑗=0

𝑁𝑁−1

𝑠𝑠𝑗𝑗 cos 2𝜋𝜋𝑓𝑓𝑗𝑗𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑖𝑖𝑡𝑡 𝑑𝑑𝑡𝑡

=
1

𝑇𝑇𝑁𝑁
�
𝑗𝑗=0

𝑁𝑁−1

𝑠𝑠𝑗𝑗 �
0

𝑇𝑇𝑁𝑁
cos 2𝜋𝜋 𝑓𝑓𝑐𝑐 + 𝑗𝑗/𝑇𝑇𝑁𝑁 cos 2𝜋𝜋 𝑓𝑓𝑐𝑐 + 𝑠𝑠/𝑇𝑇𝑁𝑁 𝑡𝑡 𝑑𝑑𝑡𝑡

=
1

2𝑇𝑇𝑁𝑁
�
𝑗𝑗=0

𝑁𝑁−1

𝑠𝑠𝑗𝑗 �
0

𝑇𝑇𝑁𝑁
cos 2𝜋𝜋 𝑗𝑗 − 𝑠𝑠 𝑡𝑡/𝑇𝑇𝑁𝑁 𝑑𝑑𝑡𝑡 + �

0

𝑇𝑇𝑁𝑁
cos 2𝜋𝜋 2𝑓𝑓𝑐𝑐 + 𝑗𝑗 + 𝑠𝑠 /𝑇𝑇𝑁𝑁 𝑡𝑡 𝑑𝑑𝑡𝑡

≈
1
2 �

𝑗𝑗=0

𝑁𝑁−1

𝑠𝑠𝑗𝑗𝛿𝛿 𝑗𝑗 − 𝑠𝑠 =
1
2 𝑠𝑠𝑖𝑖

= 0 for 𝑓𝑓𝑐𝑐 ≫ 1/𝑇𝑇𝑁𝑁
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Discrete Implementation of 
OFDM (Discrete Multitone)8. Multicarrier Modulation

Requirement for separate modulators and demodulators on each subchannel is
unrealizable for most of systems ⇒ discrete implementation of OFDM using FFT and IFFT.

Complex symbol X

Discrete frequency 
components of OFDM

Time samples 𝑥𝑥𝑛𝑛 =
1
𝑁𝑁

�
𝑘𝑘=0

𝑁𝑁−1

𝑋𝑋𝑘𝑘𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑛𝑛𝑘𝑘/𝑁𝑁
Serial to parallel converter

QPSK/QAM
modulator

X

Data 
input

R

X0

X1

XN -1
IFFT

x0

x1

xN -1

Add cyclic prefix, and
Parallel to serial converter

DAC
x(t )

cos(2πfct) 

s(t )
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Discrete multitone transmitter



Discrete Implementation of 
OFDM (Discrete Multitone)8. Multicarrier Modulation

• Baseband OFDM signal at the DAC output is

𝑥𝑥 𝑡𝑡 =
1
𝑁𝑁

�
𝑘𝑘=0

𝑁𝑁−1

𝑋𝑋𝑘𝑘𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑘𝑘𝑡𝑡/𝑁𝑁 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑁𝑁

• The subcarrier frequencies are 𝑓𝑓𝑖𝑖 = 𝑖𝑖
𝑇𝑇𝑁𝑁

, 𝑠𝑠 = 1,2, ⋯ , 𝑁𝑁 − 1

• The discrete time values 𝑥𝑥0, ⋯ , 𝑥𝑥𝑁𝑁−1 represent samples of 𝑥𝑥 𝑡𝑡 every 
𝑇𝑇𝑁𝑁/𝑁𝑁 seconds.

• The baseband OFDM signal 𝑥𝑥 𝑡𝑡 is upconverted to the carrier frequency 𝑓𝑓𝑐𝑐, 
to get RF signal 𝑠𝑠 𝑡𝑡 .

• Symbol duration 𝑇𝑇𝑁𝑁 is chosen sufficiently large ( ⁄𝐵𝐵 𝑁𝑁 ≪ 𝐵𝐵𝑐𝑐) to remove most 
of ISI caused by the channel.

• ISI can be completely removed by either adding a guard time equal to the 
channel delay spread, or by adding a cyclic prefix after the IFFT.
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Discrete Implementation of 
OFDM (Discrete Multitone)8. Multicarrier Modulation
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s(t )

cos(2πfct) 

x(t )
ADC

Rem
ove cyclic prefix, and

Serial to parallel to converter

FFT

x0

x1

xN -1

X0

X1

XN -1

Parallel to serial converter
QPSK/QAM
demodulator

X

Data 
output

R

LPF

Cyclic prefix (CP): let the channel delay spread has a maximum value of 𝜇𝜇𝑇𝑇𝑁𝑁/𝑁𝑁, 
(𝑇𝑇𝑁𝑁/𝑁𝑁 is the sampling rate). The CP increases the number of samples in the 
𝑥𝑥𝑛𝑛 sequence to 𝑁𝑁 + 𝜇𝜇. 

The new DAC input is �𝑥𝑥𝑁𝑁−𝜇𝜇, ⋯ , 𝑥𝑥𝑁𝑁−1

𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖𝑐𝑐 𝑝𝑝𝑟𝑟𝑒𝑒𝑓𝑓𝑖𝑖𝑗𝑗

, }𝑥𝑥0, 𝑥𝑥1, ⋯ , 𝑥𝑥𝑁𝑁−1 .



Let us consider a received signal 𝑟𝑟 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 ∗ 𝑐𝑐 𝑡𝑡 , where 𝑐𝑐 𝑡𝑡 is the channel 
impulse response. Assuming that  the input to the FFT is the circular convolution 
of 𝑥𝑥𝑛𝑛 and 𝑐𝑐𝑛𝑛 we can introduce:

• By convolving 𝑥𝑥𝑁𝑁−𝜇𝜇, ⋯ , 𝑥𝑥𝑁𝑁−1, 𝑥𝑥0, 𝑥𝑥1, ⋯ , 𝑥𝑥𝑁𝑁−1 with 𝑐𝑐0, 𝑐𝑐1, ⋯ , 𝑐𝑐𝜇𝜇 we get 
𝑟𝑟𝑛𝑛 with duration 𝑁𝑁 + 𝜇𝜇 ⇒ adding the CP at the transmitter converts the 

circular convolution associated with the FFT to a linear convolution.

• The FFT output is �𝑋𝑋𝑘𝑘 = 𝐶𝐶𝑘𝑘𝑋𝑋𝑘𝑘 where 𝐶𝐶𝑘𝑘 is the FFT of 𝑐𝑐0, 𝑐𝑐1, ⋯ , 𝑐𝑐𝜇𝜇 ⇒ the 
effects of the channel 𝑐𝑐 𝑡𝑡 can be completely removed by frequency 
equalization by multiplying each �𝑋𝑋𝑘𝑘 by 1/𝐶𝐶𝑘𝑘.

Discrete Implementation of 
OFDM (Discrete Multitone)8. Multicarrier Modulation
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Performance8. Multicarrier Modulation

• Each subchannel is relatively narrowband ⇒ the effect of delay spread is 
mitigated.

• Each subchannel can suffer from flat-fading, which can cause large BERs on 
some of the subchannels ⇒ necessity of frequency equalization, precoding, 
coding across subchannels, or adaptive loading.

Let 𝑆𝑆𝑁𝑁𝑅𝑅 = 𝑃𝑃𝑖𝑖𝛼𝛼𝑖𝑖/ 𝑁𝑁0𝐵𝐵 , where 𝑃𝑃𝑖𝑖 and 𝛼𝛼𝑖𝑖 are the power and fading on i -th
subcarrier, then precoding (frequency equalization at the transmitter side) will 
cause that the transmitted power in the i -th subchannel is 𝑃𝑃𝑖𝑖/𝛼𝛼𝑖𝑖

𝑗 ⇒
transmitter must know the subchannel fading 𝛼𝛼𝑖𝑖 . The received then signal will 
be 𝑃𝑃𝑖𝑖𝛼𝛼𝑖𝑖

𝑗/𝛼𝛼𝑖𝑖
𝑗 = 𝑃𝑃𝑖𝑖.

Adaptive loading is based on the adaptive modulation technique, where the 
data rate and power are assigned to each subchannel relative to that 
subchannel gain ⇒ knowledge of the subchannel fading 𝛼𝛼𝑖𝑖 , 𝑠𝑠 = 1,2, ⋯ , 𝑁𝑁 is 
required.
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Introduction

Spread spectrum performance
• Increases signal bandwidth to reduce ISI and narrowband interference. 
• Enables the system resistance to a narrowband jamming. 
• Allows hiding the transmitted signal below the noise floor (suitable for 

military applications).
• With a RAKE receiver provides a form of diversity, known as code diversity.

Spread spectrum forms
• Direct sequence: (more common) the data signal is modulated (multiplied) 

by a pseudorandom bit sequence (a spreading sequence).
• Frequency hopping: the carrier frequency rapidly changes among many 

distinct frequencies occupying a large spectral band.

9. Spread spectrum modulation



Direct sequence spread 
spectrum

In a spread spectrum direct sequence (SSDS) system the data signal 𝑠𝑠𝑏𝑏 𝑡𝑡 is 
multiplied by a pseudo-random Binary sequence (PRBS) 𝑠𝑠𝑐𝑐 𝑡𝑡 . 
The bit duration of the data signal 𝑇𝑇𝑏𝑏 and bit duration of PRBS satisfy the 
condition 𝑇𝑇𝑏𝑏 = 𝐾𝐾𝑇𝑇𝑐𝑐 , 𝐾𝐾 ∈ ℝ. 𝑅𝑅𝑐𝑐 = 1/𝑇𝑇𝑐𝑐 is the chip rate.
Frequency response of the transmitted signal 𝑆𝑆 𝑓𝑓 = ℱ 𝑠𝑠𝑏𝑏 𝑡𝑡 𝑠𝑠𝑐𝑐 𝑡𝑡 =
𝑆𝑆𝑏𝑏 𝑓𝑓 ∗ 𝑆𝑆𝑐𝑐 𝑓𝑓 has a 3 dB bandwidth 𝐵𝐵 = 𝐾𝐾 + 1 𝐵𝐵𝑏𝑏, where 𝐵𝐵𝑏𝑏is the original 
signal bandwidth ⇒ the spreading factor is 𝐽𝐽 = 𝐵𝐵/𝐵𝐵𝑏𝑏 ≈ 𝐾𝐾.
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𝐷𝐷: delay
𝑎𝑎𝑖𝑖 : initialization value
𝑏𝑏𝑖𝑖 : feedback

PRBS generator based on a shift register

D D D D

XOR

a1 a2 a3 an

CLK

Output 
PRBS

b1 b2
b3

bn

sc(t)

Tc

9. Spread spectrum modulation



Direct sequence

173

PRBS generator length: 𝑁𝑁 = 2𝑛𝑛 − 1.

Maximal PRBS codes
The number of negative ones in a sequence is approximately equal to the 
number of ones. The autocorrelation of 𝑠𝑠𝑐𝑐 𝑡𝑡 is

𝑟𝑟𝑐𝑐 𝜏𝜏 =
1
𝑇𝑇𝑏𝑏

�
0

𝐾𝐾𝑇𝑇𝑐𝑐
𝑠𝑠𝑐𝑐 𝑡𝑡 𝑠𝑠𝑐𝑐 𝑡𝑡 − 𝜏𝜏 𝑑𝑑𝑡𝑡 = �1 −

𝜏𝜏 1 + 1/𝑁𝑁
𝑇𝑇𝑐𝑐

𝜏𝜏 ≤ 𝑇𝑇𝑐𝑐

−1/𝑁𝑁 𝜏𝜏 > 𝑇𝑇𝑐𝑐

Autocorrelation of 
Maximal Code (K = N)

Tc-Tc 2Tc 3Tc-2Tc-3Tc 0

1
rC (τ )

τ-1/N

(9.1)
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Direct sequence

BPSK spread spectrum transmitters

Asumptions:
• The BPSK modulator uses rectangular pulse shapes 𝑔𝑔 𝑡𝑡 = �1, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑏𝑏

0, otherwise
• The baseband data signals are 𝑥𝑥 𝑡𝑡 = ∑𝑘𝑘 𝑑𝑑𝑔𝑔 𝑡𝑡 − 𝑘𝑘𝑇𝑇𝑏𝑏 ,
• The channel introduces multipath  ℎ 𝑡𝑡 = ∑𝑗𝑗 𝛼𝛼𝑗𝑗𝛿𝛿 𝑡𝑡 − 𝜏𝜏𝑗𝑗 .
• The channel adds noise 𝑠𝑠 𝑡𝑡 and narrowband interference 𝐼𝐼 𝑡𝑡 .

+
XOR

BPSK 
modulator

Carrier 
generator

PRBS 
generator

d(t) x(t) s(t)

p(t)

TX

±1

cos 2πfct

Channel 
h(t) +

n(t) + I(t)
g(t)

r(t)

𝑇𝑇𝑐𝑐 = 𝑇𝑇𝑏𝑏/𝐾𝐾
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BPSK spread spectrum receiver

Direct sequence

Asumptions:

• The perfect synchronization generates PRBS 𝑝𝑝 𝑡𝑡 − 𝜏𝜏 .
• The synchronizer synchronizes either to the first multipath component 

above a given threshold or the strongest multipath component.
• The signal �𝑥𝑥 𝑡𝑡 passes through a BPSK demodulator after despreading.

PNPA(t)

BPSK 
demodulator

Synchronizer PRBS 
generator

x (t)

p(t – τ)

±1

cos [2πfC (t – τ)]

d (t)

Decission 
device

 =±Vref

r(t)

RX
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Direct sequence

�𝑥𝑥 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 𝑝𝑝 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 ∗ ℎ 𝑡𝑡 𝑝𝑝 𝑡𝑡 − 𝜏𝜏 + 𝑠𝑠 𝑡𝑡 𝑝𝑝 𝑡𝑡 − 𝜏𝜏 + 𝐼𝐼 𝑡𝑡 𝑝𝑝 𝑡𝑡 − 𝜏𝜏

Narrowband interference rejection (single TX, single RX)
Let ℎ𝑖𝑖 𝑡𝑡 = 𝛿𝛿 𝑡𝑡 ⇒ 𝜏𝜏 = 0. Assuming that 𝑓𝑓 𝑡𝑡 ∗ 𝛿𝛿 𝑡𝑡 = 𝑓𝑓 𝑡𝑡 and 
𝑥𝑥 𝑡𝑡 𝑝𝑝 𝑡𝑡 𝑝𝑝 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 since 𝑝𝑝𝑗 𝑡𝑡 = 1 we have

�𝑥𝑥 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝑠𝑠 𝑡𝑡 𝑝𝑝 𝑡𝑡 + 𝐼𝐼 𝑡𝑡 𝑝𝑝 𝑡𝑡 .

Demodulator output signal is

�̂�𝑑𝑘𝑘 =
1
𝑇𝑇𝑏𝑏

�
0

𝑇𝑇𝑏𝑏
𝑑𝑑𝑘𝑘 cos𝑗 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑑𝑑𝑡𝑡 +

1
𝑇𝑇𝑏𝑏

�
0

𝑇𝑇𝑏𝑏
𝑠𝑠 𝑡𝑡 𝑝𝑝 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑑𝑑𝑡𝑡

(9.2)

(9.3)
+

1
𝑇𝑇𝑏𝑏

�
0

𝑇𝑇𝑏𝑏
𝐼𝐼 𝑡𝑡 𝑝𝑝 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑑𝑑𝑡𝑡 =

1
2

𝑑𝑑𝑘𝑘 + 𝑠𝑠𝑘𝑘 + ⏟𝐼𝐼𝑘𝑘
0

Integrating the product 𝐼𝐼 𝑡𝑡 𝑝𝑝 𝑡𝑡 and the cosine term cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 yield 
approximately zero because 𝑇𝑇𝑐𝑐 = 𝑇𝑇𝑏𝑏/𝐾𝐾 and 𝑓𝑓𝑐𝑐 ≫ 1

𝑇𝑇𝑏𝑏
⇒ 𝐼𝐼𝑘𝑘 ≈ 0.

9. Spread spectrum modulation
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Direct sequence

Delayed component reception (single TX, single RX)

ℎ 𝑡𝑡 = 𝛼𝛼1𝛿𝛿 𝑡𝑡 + 𝛼𝛼𝑗𝛿𝛿 𝑡𝑡 − 𝜏𝜏0 . Let 𝛼𝛼1 > 𝛼𝛼𝑗 and 𝐼𝐼 𝑡𝑡 = 0. Then

�𝑥𝑥 𝑡𝑡 = 𝛼𝛼1𝑥𝑥 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝛼𝛼𝑗𝑥𝑥 𝑡𝑡 − 𝜏𝜏0 𝑝𝑝 𝑡𝑡 − 𝜏𝜏0 𝑝𝑝 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐 𝑡𝑡 − 𝜏𝜏0

+ 𝑠𝑠 𝑡𝑡 𝑝𝑝 𝑡𝑡 .

Similarly to (9.3) we can get

�̂�𝑑𝑘𝑘 = 1
𝑗

𝛼𝛼1𝑑𝑑𝑘𝑘 + 1
𝑗

𝛼𝛼𝑗𝑑𝑑𝑘𝑘0 + 𝑠𝑠𝑘𝑘,

where

𝑑𝑑𝑘𝑘0 = 𝑑𝑑𝑘𝑘−𝑘𝑘0 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝜏𝜏0
1
𝑇𝑇𝑏𝑏

�
0

𝑇𝑇𝑏𝑏
𝑝𝑝 𝑡𝑡 𝑝𝑝 𝑡𝑡 − 𝜏𝜏0 𝑑𝑑𝑡𝑡

𝜌𝜌 𝜏𝜏0

,

and 𝑑𝑑𝑘𝑘−𝑘𝑘0is the symbol corresponding to time 𝑡𝑡 − 𝜏𝜏0.

(9.4)

(9.5)
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Rake receiver

If 𝑁𝑁 = 𝐾𝐾 and 𝜏𝜏0 > 𝑇𝑇𝑐𝑐 then 𝑑𝑑𝑘𝑘−𝑘𝑘0 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝜏𝜏0 𝜌𝜌 𝜏𝜏0 = −𝑑𝑑𝑘𝑘−𝑘𝑘0 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝜏𝜏0 /𝐾𝐾
⇒ the power of all multipath components at delays greater than 𝑇𝑇𝑐𝑐 is
reduced by the spreading gain ⇒ most of the ISI is removed.

Rake receiver
Diversity receiver uses the autocorrelation properties of the PRBS to 
coherently combine all multipath components.

• It has several branches synchronized to a different multipath component. 
The time delay of the PRBS code between branches is 𝑇𝑇𝑐𝑐. If the received 
PRBS is delayed by more than a small fraction of 𝑇𝑇𝑐𝑐 performance is 
significantly decreased ⇒ precise tracking is required.

• Any of the combining techniques (selection combining, threshold 
combining, maximal ratio combining, equal-gain combining) may be used.

9. Spread spectrum modulation
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Rake receiver 

• Equal gain combining (which co-phases the signals on each branch and then 
combines them with equal weighting) is the most common, as it does not 
require knowledge of the multipath amplitudes.

Coherent 
combiner Demodulator

p(t )

p(t – Tc )

p(t - 2Tc )

p(t – LTc )

r(t)
d(t)
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• Multiple access transmission assumes several separate TX and single
common RX.

• Each user has their own unique code to spread the transmitted signal.
• The users occupy the same bandwidth.
• The spreading codes (orthogonal or semi-orthogonal) have much higher 

chip rate than the data rate.

Multiple access channels

dM (t)

d2(t)

TX 1
d1(t) s1 (t)

+
r(t)

TX 2

TX M

Channel 
h1(t)

Channel 
h2(t)

s2 (t)

Channel 
hM(t)

sM (t)

+

n(t)

s1(t)*h1(t)  

sM(t)*hM(t)  

RX 1

RX 2

RX M
dM (t)

d2(t)

d1(t)
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Multiple access channels

• To eliminate multiple access (MAC) interference, the cross correlation 
between the codes assigned to user 𝑠𝑠 and user 𝑗𝑗

𝜌𝜌𝑖𝑖𝑗𝑗 𝜏𝜏 =
1
𝑇𝑇𝑏𝑏

�
0

𝑇𝑇𝑏𝑏
𝑝𝑝𝑖𝑖 𝑡𝑡 𝑝𝑝𝑗𝑗 𝑡𝑡 − 𝜏𝜏 𝑑𝑑𝑡𝑡

should satisfy 𝜌𝜌𝑖𝑖𝑗𝑗 𝜏𝜏 ≈ 0.

• Orthogonal codes (e.g. Walsh-Hadamard codes) can support limited 
number of users, but MAC interference are eliminated because  𝜌𝜌𝑖𝑖𝑗𝑗 𝜏𝜏 = 0.

• Semi-orthogonal codes (e.g. Gold codes) can support more users than the 
orthogonal codes, but they exhibit nonzero MAC interference because

𝜌𝜌𝑖𝑖𝑗𝑗 𝜏𝜏 ≈
1

𝐽𝐽
,

where 𝐽𝐽 is spreading (bandwidth expansion) factor. 
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(9.6)
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Interference rejection
Let us consider a transmission with semi-orthogonal codes and no multipath 
where ℎ𝑗𝑗 𝑡𝑡 = 𝛼𝛼𝑗𝑗𝛿𝛿 𝑡𝑡 , 𝑗𝑗 = 1, 2, ⋯ , 𝑀𝑀. The desired signal component is given by 
(9.2) and (9.3). The interference signal 𝐼𝐼𝑖𝑖 𝑡𝑡 for i -th receiver branch is

𝐼𝐼𝑖𝑖 𝑡𝑡 = �
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑀𝑀
1
𝑇𝑇𝑏𝑏

�
0

𝑇𝑇𝑏𝑏
𝑥𝑥𝑗𝑗 𝑡𝑡 𝑝𝑝𝑗𝑗 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 ∗ ℎ𝑗𝑗 𝑡𝑡 cos 2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑝𝑝𝑖𝑖 𝑡𝑡 𝑑𝑑𝑡𝑡

(9.7)= �
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑀𝑀

𝛼𝛼𝑗𝑗𝑑𝑑𝑗𝑗
1
𝑇𝑇𝑏𝑏

�
0

𝑇𝑇𝑏𝑏
𝑝𝑝𝑖𝑖 𝑡𝑡 𝑝𝑝𝑗𝑗 𝑡𝑡

1
2

+
cos 4𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡

2
𝑑𝑑𝑡𝑡 ≈

1
2

�
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑀𝑀
𝛼𝛼𝑗𝑗𝑑𝑑𝑗𝑗

𝐺𝐺
,

where 𝐺𝐺 ≜ 1/𝜌𝜌𝑖𝑖𝑗𝑗 𝜏𝜏 , and 𝛼𝛼𝑗𝑗 is the path gain of the j - th user’s channel.
Integral ∫0

𝑇𝑇𝑏𝑏 𝑝𝑝𝑖𝑖 𝑡𝑡 𝑝𝑝𝑗𝑗 𝑡𝑡 cos 4𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 𝑑𝑑𝑡𝑡 ≈ 0 because 2𝑓𝑓𝑐𝑐 ≫ 1/𝑇𝑇𝑏𝑏 and 𝑝𝑝𝑖𝑖 𝑡𝑡 𝑝𝑝𝑗𝑗 𝑡𝑡
at any chip period is ±1.
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The interference 𝐼𝐼𝑖𝑖 𝑡𝑡 and signal �𝑥𝑥𝑖𝑖 𝑡𝑡 are attenuated by different path gains. 
If 𝛼𝛼𝑗𝑗 ≫ 𝛼𝛼𝑖𝑖 the MAC interference can be quite large.

The received signal power on the i - th branch is 𝑆𝑆𝑖𝑖 = 𝛼𝛼𝑖𝑖
𝑗𝑆𝑆, where 𝑆𝑆 is the 

transmitted power. 

The interference power is 𝐼𝐼𝑖𝑖 = 𝛼𝛼𝑗𝑗
𝑗 𝑀𝑀 − 1 /4𝐺𝐺. 

The signal to-interference power ratio then is

𝑆𝑆𝑖𝑖

𝐼𝐼𝑖𝑖
=

𝛼𝛼𝑖𝑖
𝑗𝐺𝐺

𝛼𝛼𝑗𝑗
𝑗4 𝑀𝑀 − 1

≪
𝐺𝐺

𝑀𝑀 − 1
.
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Multiple access channels

(9.8)

9. Spread spectrum modulation



9. Spread Spectrum Modulation Broadcast channels
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• Broadcast transmission assumes single common TX and several separate RX.

• Let us consider a broadcast with semi-orthogonal codes and no multipath 
where ℎ𝑗𝑗 𝑡𝑡 = 𝛼𝛼𝑗𝑗𝛿𝛿 𝑡𝑡 , 𝑗𝑗 = 1, 2, ⋯ , 𝑀𝑀. The desired signal component is given 
by (9.2) and (9.3). The interference signal 𝐼𝐼𝑖𝑖 𝑡𝑡 for i -th receiver is

𝐼𝐼𝑖𝑖 𝑡𝑡 =
𝛼𝛼𝑖𝑖

2
�
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑀𝑀
𝑑𝑑𝑗𝑗

𝐺𝐺
,

𝑆𝑆𝑖𝑖

𝐼𝐼𝑖𝑖
=

𝐺𝐺
4 𝑀𝑀 − 1

. (9.9)
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RX M
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d2(t)
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+

+

+

n(t)
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10. Channel diversity Introduction

Channel diversity goal: achieving more reliable detection by sending signals that 
carry the same information through multiple independent paths. 
Reliable communication is possible as long as one of the paths is strong (it has 
high SNR).
Channel diversity types: 
• Time diversity: coded symbols are dispersed over time in different 

coherence periods so that different parts of the codewords experience 
independent fades.

• Frequency diversity: signals are transmitted over frequency-selective 
channel with different fading statistics

• Space diversity: identical signals propagate between sufficiently spaced  
multiple transmit and/or receive antennas.

Assumptions for analysis: the receiver has perfect knowledge of the channel 
gains and can coherently combine the received signals in the diversity paths.
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10. Channel diversity Time diversity

Time diversity: achieved by averaging the fading of the channel over time. The
channel is highly correlated across consecutive symbols ⇒ to ensure that the 
coded symbols are transmitted through independent fading gains interleaving
of codewords is required.
Let the codeword 𝐱𝐱 = 𝑥𝑥1, 𝑥𝑥𝑗, ⋯ , 𝑥𝑥𝑀𝑀 is transmitted over a flat fading channel. The 
received signal is 

𝑦𝑦𝑙𝑙 = 𝑥𝑥𝑙𝑙ℎ𝑙𝑙 + 𝑤𝑤𝑙𝑙 , 𝑙𝑙 = 1, ⋯ , 𝐿𝐿

where 𝑤𝑤𝑙𝑙 is additive noises and 𝐿𝐿 is called the number of diversity branches. If 
consecutive symbols 𝑥𝑥𝑙𝑙 are transmitted sufficiently far apart in time, we can 
assume that the ℎ𝑙𝑙 are independent.

Repetition code
Code, in which 𝑥𝑥𝑙𝑙 = 𝑥𝑥1 and

𝐲𝐲 = 𝐡𝐡𝑥𝑥1 + 𝐰𝐰,

𝐱𝐱 = 𝑥𝑥1, 𝑥𝑥𝑗, ⋯ , 𝑥𝑥𝑀𝑀
T, 𝐡𝐡 = ℎ1, ℎ𝑗, ⋯ , ℎ𝑀𝑀

T, 𝐰𝐰 = 𝑤𝑤1, 𝑤𝑤𝑗, ⋯ , 𝑤𝑤𝑀𝑀
T, 

(10.1)
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Let the BPSK modulation, with 𝑥𝑥1 = ±𝑎𝑎 is used. The error probability is

𝑃𝑃 𝑒𝑒 = 𝑄𝑄 𝑗 𝐡𝐡 2𝑎𝑎2

𝑁𝑁0
,

where 𝐡𝐡 𝑗 = ∑𝑙𝑙=1
𝑀𝑀 ℎ𝑙𝑙

𝑗, ℎ𝑙𝑙 ∈ 0,1 is a sum of the squares of 2𝐿𝐿 independent 
real Gaussian random variables (squares of the real and imaginary parts) ⇒ Chi-
square distributed variables with 2𝐿𝐿 degrees of freedom, which density is

𝑓𝑓 𝑥𝑥 =
1

𝐿𝐿 − 1 !
𝑥𝑥𝑀𝑀−1𝑒𝑒−𝑗𝑗, 𝑥𝑥 ≥ 0.

Then 

𝑃𝑃 𝑒𝑒 = �
0

∞
𝑄𝑄 2𝑥𝑥𝑆𝑆𝑁𝑁𝑅𝑅𝑠𝑠 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥 =

1 − 𝜇𝜇
2

𝑀𝑀

�
𝑙𝑙=0

𝑀𝑀−1
𝐿𝐿 − 1 + 𝑙𝑙

𝑙𝑙
1 + 𝜇𝜇

2

𝑙𝑙

,

where 𝜇𝜇 = 𝑛𝑛𝑁𝑁𝑅𝑅𝑠𝑠
1+𝑛𝑛𝑁𝑁𝑅𝑅𝑠𝑠

and 𝑆𝑆𝑁𝑁𝑅𝑅𝑠𝑠 = ⁄𝑎𝑎𝑗 𝑁𝑁0 is SNR per symbol time.

10. Channel diversity Time diversity

(10.2)

(10.3)
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10. Channel diversity Time diversity

At high 𝑆𝑆𝑁𝑁𝑅𝑅𝑠𝑠 we get ⁄1 + 𝜇𝜇 2 ≈ 1 and ⁄1 − 𝜇𝜇 2 ≈ ⁄1 4𝑆𝑆𝑁𝑁𝑅𝑅𝑠𝑠

�
𝑙𝑙=0

𝑀𝑀−1
𝐿𝐿 − 1 + 𝑙𝑙

𝑙𝑙 = 2𝐿𝐿 − 1
𝐿𝐿 ⟹ 𝑃𝑃 𝑒𝑒 = 2𝐿𝐿 − 1

𝐿𝐿
1

4𝑆𝑆𝑁𝑁𝑅𝑅𝑠𝑠
𝑀𝑀

The error probability decreases with the 𝐿𝐿 - th power of 𝑆𝑆𝑁𝑁𝑅𝑅𝑠𝑠 .

SNR s

P(e)

(10.4)
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Antenna diversity

If the antennas are deployed sufficiently far apart, the channel gains between
different antenna pairs fade independently.
• Receive diversity: multiple antennas are at the receiver side - single input 

multiple output (SIMO) channel.
• Transmit diversity: multiple antennas are at the transmitter side - multiple 

input single output (MISO) channel.

Receive diversity
let us have 1 transmit antenna and 𝐿𝐿 receive antennas

RX
TX

1
2

L

10. Channel diversity



𝑦𝑦𝑙𝑙 𝑚𝑚 = ℎ𝑙𝑙 𝑚𝑚 𝑥𝑥 𝑚𝑚 + 𝑤𝑤𝑙𝑙 , 𝑚𝑚 , 𝑙𝑙 = 1, ⋯ , 𝐿𝐿

and we want to detect 𝑥𝑥 1 based on 𝑦𝑦1 1 , ⋯ , 𝑦𝑦𝑀𝑀 1 ⟹ the same detection 
problem as in a repetition code. 

The error probability of BPSK:

𝑃𝑃 𝑒𝑒 = 𝑄𝑄 2 𝐡𝐡 𝑗𝑆𝑆𝑁𝑁𝑅𝑅𝑠𝑠

Antenna diversity

190

For the coherent combining at the receiver we can write

𝐡𝐡 𝑗𝑆𝑆𝑁𝑁𝑅𝑅𝑠𝑠 = 𝐿𝐿 � 𝑆𝑆𝑁𝑁𝑅𝑅𝑠𝑠
1
𝐿𝐿

𝐡𝐡 𝑗,

where 𝐿𝐿 � 𝑆𝑆𝑁𝑁𝑅𝑅𝑠𝑠 is an array gain and 1
𝑀𝑀

𝐡𝐡 𝑗 is the diversity gain. 

Averaging of the channel responses over multiple independent signal paths, 
decrease the probability that the overall gain is small.

(10.5)

(10.6)

10. Channel diversity
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For very high 𝐿𝐿 and fully correlated channel we have:

1
𝐿𝐿

𝐡𝐡 𝑗 =
1
𝐿𝐿

�
𝑙𝑙=1

𝑀𝑀

ℎ𝑙𝑙 1 𝑗 → 1

i.e. 1
𝑀𝑀

𝐡𝐡 𝑗 converges to 1.

Antenna diversity

Transmit diversity
We have 𝐿𝐿 transmit antennas and 1 receive 
antenna. 

This concept is suitable for mobile 
communications because it is less expensive 
to have multiple antennas at the base-station 
than to have multiple antennas at every 
mobile handset.

RX
TX

1

2

L

(10.7)

10. Channel diversity
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Space-time codes

Let us transmit the same symbol over the 𝐿𝐿 different antennas during 𝐿𝐿 symbol 
periods. 
During each symbol period only one antenna is turned on ⟹ only one antenna 
is used at a time and the coded symbols of the time diversity are transmitted 
successively over the different antennas ⟹ it offers the coding gain over the 
repetition code.

Alamouti scheme
It is designed for two TX and single RX antennas. With flat fading we have

𝑦𝑦 𝑚𝑚 = +ℎ1 𝑚𝑚 𝑥𝑥1 𝑚𝑚 + ℎ𝑗 𝑚𝑚 𝑥𝑥𝑗 𝑚𝑚 + 𝑤𝑤 𝑚𝑚 , 𝑙𝑙 = 1, ⋯ , 𝐿𝐿

where ℎ𝑖𝑖 is the channel gain for transmit antenna 𝑠𝑠. The Alamouti scheme
transmits two complex symbols: 𝑥𝑥1 1 = 𝑎𝑎1, 𝑥𝑥𝑗 1 = 𝑎𝑎𝑗 and 𝑥𝑥1 2 = −𝑎𝑎𝑗

∗ ,
𝑥𝑥𝑗 2 = 𝑎𝑎1

∗ . If  ℎ = ℎ𝑖𝑖 1 = ℎ𝑖𝑖 2 , 𝑠𝑠 = 1,2.

(10.8)

10. Channel diversity
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Space-time codes

Then (10.8) can be experessed in a matrix form:

𝑦𝑦1 1 𝑦𝑦𝑗 2 = ℎ1, ℎ𝑗
𝑎𝑎1 −𝑎𝑎𝑗

∗

𝑎𝑎𝑗 𝑎𝑎1
∗ + 𝑤𝑤1 1 𝑤𝑤𝑗 2 .

We can rewrite (10.9) to

𝑦𝑦1 1
𝑦𝑦𝑗 2 ∗ =

ℎ1 ℎ𝑗
ℎ𝑗

∗ −ℎ1
∗

𝑎𝑎1
𝑎𝑎𝑗

+ 𝑤𝑤1 1
𝑤𝑤𝑗 2 ∗ .

As the columns of the square matrix are orthogonal, the detection of 𝑎𝑎1, 𝑎𝑎𝑗 can 
be decomposed into two separate procedures.

(10.9)

10. Channel diversity



11. Multiple antenna systems Multiple Input Multiple 
Output (MIMO) Systems

194

MIMO systems can significantly increase the data throughput of wireless 
systems without increasing transmit power or bandwidth.



11. Multiple antenna systems Multiple Input Multiple 
Output (MIMO) Systems
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